人工智能(AI)的不同维度分类

ops/2025/2/21 4:47:56/

人工智能(AI)的分类

对机器学习进行分类的方式多种多样,可以根据算法的特性、学习方式、任务类型等不同维度进行分类这些分类都不是互斥的:

1、按数据模态不同:图像,文本,语音,多态等

2、按目标函数不同:判别式模型,生成式模型等.

3、按学习方式不同:监督、无监督、半监督、强化学习等。

4、按任务类型不同:回归、分类、聚类、降维、生成等,


一、按数据模态分类

1. 图像模态
特点:处理二维/三维像素矩阵数据

  • 示例

    • 图像分类(ResNet识别ImageNet千类物体)

    • 目标检测(YOLO实时检测交通信号灯)

    • 医学影像分析(UNet分割肿瘤区域)

自动驾驶

2. 文本模态
特点:处理字符序列或词嵌入向量

  • 示例

    • 机器翻译(Transformer实现中英互译)

    • 情感分析(BERT判断评论情感极性)

    • 文本摘要(GPT-4生成新闻要点)

3. 语音模态
特点:处理时频域声学特征

  • 示例

    • 语音识别(Whisper转写会议录音)

    • 声纹识别(X-Vector验证用户身份)

    • 语音合成(VITS生成拟人化语音)

智能客服

4. 多模态
特点:融合多种数据模态

  • 示例

    • 视觉问答(CLIP+VQA解析"图中多少人戴口罩")

    • 视频描述生成(Flamingo生成足球比赛解说)

    • 跨模态检索(图文匹配搜索相似风格画作)


二、按目标函数分类

1. 判别式模型
特点:学习条件概率P(Y|X)

  • 示例

    • 逻辑回归(预测用户点击概率)

    • SVM(高维空间划分邮件是否为垃圾邮件)

    • 目标检测模型(输出边界框坐标和类别)

2. 生成式模型
特点:学习联合概率P(X,Y)

  • 示例

    • GAN(生成逼真人脸图像)

    • VAE(重构分子结构并生成新化合物)

    • 扩散模型(Stable Diffusion生成艺术画作)

特殊类型

  • 能量模型(EBM建模复杂分布)

  • 流模型(Glow实现可逆图像生成)


三、按学习方式分类

1. 监督学习
特点:使用标注数据

  • 示例

    • 图像分类(ImageNet标注数据集训练ResNet)

    • 时序预测(LSTM基于历史销量预测未来需求)

2. 无监督学习
特点:挖掘数据内在结构

  • 示例

    • 聚类分析(K-means对用户消费行为分组)

    • 异常检测(Isolation Forest识别信用卡欺诈)

3. 半监督学习
特点:少量标注+大量未标注数据

  • 示例

    • 自训练(用10%标注医疗影像迭代优化模型)

    • 一致性正则化(FixMatch提升图像分类效果)

4. 强化学习
特点:通过奖励机制学习策略

  • 示例

    • 游戏AI(AlphaGo自我对弈提升棋力)

    • 机器人控制(DDPG算法实现机械臂抓取)

    • 资源调度(Q-learning优化数据中心能耗)


四、按任务类型分类

1. 回归任务
特点:预测连续值

  • 示例

    • 房价预测(基于面积/地段预测数值)

    • 股票趋势预测(输出未来3日价格曲线)

2. 分类任务
特点:预测离散类别

  • 示例

    • 垃圾邮件识别(二分类:正常/垃圾)

    • 新闻主题分类(多分类:政治/经济/体育)

3. 聚类任务
特点:无监督数据分组

  • 示例

    • 客户细分(DBSCAN发现高价值用户群体)

    • 基因序列分析(层次聚类识别相似基因型)

4. 降维任务
特点:压缩数据维度

  • 示例

    • 可视化(t-SNE将高维数据投影到2D平面)

    • 特征工程(PCA提取人脸主要特征成分)

5. 生成任务
特点:创造新数据

  • 示例

    • 文本续写(GPT-4完成故事创作)

    • 分子设计(GFlowNet生成潜在药物分子)

    • 风格迁移(CycleGAN将照片转为梵高画风)


关键差异对比表

分类维度典型差异点技术代表案例对比
数据模态输入数据结构差异CNN处理图像 vs LSTM处理文本
目标函数建模概率分布方向不同SVM分类 vs GAN生成
学习方式数据标注要求程度不同监督学习需要100%标注 vs 强化学习仅需奖励信号
任务类型输出形式本质差异回归输出连续值 vs 分类输出离散标签

典型混合型案例

  1. 多模态+生成任务:DALL-E 3根据文本生成图像

  2. 强化学习+分类任务:DeepMind AlphaFold预测蛋白质结构

  3. 半监督+降维任务:SimCLR利用对比学习实现图像表征压缩

这种分类体系为理解AI技术提供了多维视角,实际应用中常出现跨类别组合,如"基于强化学习的多模态视频生成系统"即融合了四种分类维度。


http://www.ppmy.cn/ops/160147.html

相关文章

AIGC视频生成明星——Emu Video模型

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型Emu Video,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。 🌺优质专栏回顾&am…

DeepSeek-R1本地部署详细指南!(Ollama+Chatbox AI+Open WebUI)

一、前言 DeepSeek(深度求索)是一家中国人工智能企业,其在人工智能领域取得了显著成果,特别是其发布的新一代大模型DeepSeek-R1和DeepSeek-V3,受到了广泛关注。 DeepSeek官网:https://www.deepseek.com/ …

LLaMA-Factory DeepSeek-R1 模型 微调基础教程

LLaMA-Factory 模型 微调基础教程 LLaMA-FactoryLLaMA-Factory 下载 AnacondaAnaconda 环境创建软硬件依赖 详情LLaMA-Factory 依赖安装CUDA 安装量化 BitsAndBytes 安装可视化微调启动 数据集准备所需工具下载使用教程所需数据合并数据集预处理 DeepSeek-R1 可视化微调数据集处…

九联UNT403AS_晶晨S905L3S芯片_2+8G_安卓9.0_卡刷固件包

九联UNT403AS_晶晨S905L3S芯片_28G_安卓9.0_卡刷固件包 刷机教程: 下载好引导文件和固件,8G以下U盘格式化,将文件放入U盘根目录,用牙签抵着复位孔同时开机,5秒后松开即可进去刷机模式 刷机固件: 链接: h…

深度学习02 神经网络实现手写数字案例

目录 下载手写数字图像(图像标签) 展示手写数字图片 数据打包 判断当前设备是否支持GPU 建立神经网络模型 设置训练集与测试集 创建损失函数、优化器 开始训练 下载手写数字图像(图像标签) training_datadatasets.MNIST(rootdata,trainTrue,downloadTrue,transformToTe…

瑞萨RA-T系列芯片ADCGPT功能模块的配合使用

在马达或电源工程中,往往需要采集多路AD信号,且这些信号的优先级和采样时机不相同。本篇介绍在使用RA-T系列芯片建立马达或电源工程时,如何根据需求来设置主要功能模块ADC&GPT,包括采样通道打包和分组,GPT触发启动…

审计级别未启用扩展模式导致查询 DBA_AUDIT_TRAIL 时 SQL_TEXT 列为空

如果查询 DBA_AUDIT_TRAIL 时发现 SQL_TEXT 列为空,但其他字段(如 OS_USERNAME、USERNAME、TIMESTAMP 等)有数据,可能是由于以下原因之一。以下是可能的原因及解决方法: 1. 审计级别未启用扩展模式 默认情况下&#x…

青少年编程与数学 02-009 Django 5 Web 编程 17课题、中间件

青少年编程与数学 02-009 Django 5 Web 编程 17课题、中间件 一、中间件中间件的特点中间件的作用 二、应用场景1. **消息传递**2. **数据库管理**3. **负载均衡**4. **缓存**5. **身份验证和授权**6. **企业应用集成**7. **云计算平台** 三、Django中的中间件中间件的工作原理…