【大模型】Ubuntu下安装ollama,DeepSseek-R1:32b的本地部署和运行

ops/2025/2/11 11:20:19/

1 ollama 的安装与设置

ollama官网链接:https://ollama.com/

  • 在左上角的【Models】中展示了ollama支持的模型
  • 在正中间的【Download】中课可以下载支持平台中的安装包。
    在这里插入图片描述

其安装和模型路径配置操作流程如下:

  1. ollama的安装
    这里选择命令安装
    curl -fsSL https://ollama.com/install.sh | sh
    
    正确安装后,查看安装的ollama版本
    ollama --version
    
  2. 启动ollama服务
    ollama serve
    
    若报端口被占用,则查看端口的使用情况
    sudo lsof -i :11434
    
  3. 下载模型默认路径的修改(可选,推荐)
    正常来说,就可以下载和运行模型了。但大模型一般来说比较大,最好将模型下载默认路径设置在挂载的数据盘上。默认情况下,ollama模型的存储目录为 /usr/share/ollama/.ollama/models
    修改默认路径的操作如下:
    • 创建路径并修改权限
      # 这里设置路径为 /opt/ai-platform/lldataset/ollama/
      sudo mkdir /opt/ai-platform/lldataset/ollama/
      sudo chmod -R 777 /opt/ai-platform/lldataset/ollama/
      
    • 停止服务并修改配置文件
      sudo systemctl stop ollama
      sudo nano /etc/systemd/system/ollama.service
      
      打开文件后,添加内容
      Environment="OLLAMA_MODELS=/opt/ai-platform/lldataset/ollama/"
      Environment="OLLAMA_HOST=0.0.0.0:11434"# 按下 Ctrl + O 保存文件。
      # 按下 Enter 确认保存。
      # 按下 Ctrl + X 退出编辑器。
      
    • 启动ollama并查看其状态
      sudo systemctl daemon-reload
      sudo systemctl restart ollama.servicesudo systemctl status ollama.service
      
      若正确启动则如下图在这里插入图片描述

2 ollama运行大模型

ollama下载和运行大模型跟简单,即ollama run <模型名称>。若未下载,则先下载再运行;若已下载,则试接运行。
实际使用中,需要根据自己设备资源支持,去下载某个大模型的某个版本。以deepseek-r1为例,具体操作为:

  1. 搜索栏中搜索【deepseek-r1】
    在这里插入图片描述
  2. 根据自己服务器的显存大小,选择合适的模型版本。复制命令
    ollama run deepseek-r1:32b
    
    在这里插入图片描述
    拉取成功后即可进行问答。从deepseek回答的think中,能看出它是个讨好型的大模型
    在这里插入图片描述
    在这里插入图片描述

3 交互界面 ChatBox

服务器上部署好了deepseek,然后在同局域网下的本机,可安装windows版本的chatbox,进行界面中的问答。chatbox的下载链接 https://chatboxai.app/zh。下载windows平台下的应用,双击安装。

  1. 左下角的【设置】
  2. 【模型提供方】选择【OLLAMA API】。
  3. 【模型】中会出现服务器中ollama已经拉取的模型列表。选择想要使用的模型。
  4. 点击【保存】
  5. 点击左下角的【新对话】,然后就可以进行大模型问答
    在这里插入图片描述
    在这里插入图片描述

4 DeepSeek-R1-Distill-Qwen-32B的简单介绍

DeepSeek R1

  • 是一款拥有 6710 亿参数的大型混合专家(MoE)模型。通过强化学习(RL)和监督微调(SFT)相结合的方式训练,DeepSeek R1 的推理能力得到了显著提升。

DeepSeek-R1-Distill-Qwen-32B
通过将 DeepSeek R1 的推理模式蒸馏到更小的模型中,实现了更高效的性能。 在该模型中

  • DeepSeek 和 Qwen 的关系是基于知识蒸馏的师生关系:

    • DeepSeek-R1 是教师模型:它是一个经过大规模强化学习训练的强大推理模型,具有复杂的结构和庞大的参数量。DeepSeek-R1 在数学、编程、逻辑推理等任务上表现出色,能够生成高质量的预测结果。
    • Qwen-32B 是学生模型:它是一个参数量较小的模型,通过学习 DeepSeek-R1 的输出来提升自己的推理能力。在蒸馏过程中,DeepSeek-R1 生成的推理轨迹和预测结果被用作“教学材料”,Qwen-32B 通过模仿这些输出来学习。
  • 蒸馏过程

    • 数据生成:DeepSeek-R1 生成了 800K 条高质量的推理数据,这些数据包括数学、编程、逻辑推理等任务。这些数据被用作蒸馏过程中的“教学材料”。
    • 训练过程:Qwen-32B 作为学生模型,输入这些数据并尝试生成与 DeepSeek-R1 相似的推理轨迹和预测结果。通过监督微调(SFT),Qwen-32B 的参数不断优化,使其输出逐渐逼近 DeepSeek-R1。
    • 性能提升:经过蒸馏的 Qwen-32B 在多个基准测试中表现出色,例如在 AIME 2024 上得分 72.6%,在 MATH-500 上得分 94.3%,在 LiveCodeBench 上得分 57.2%。这些结果显著优于直接在 Qwen-32B 上进行强化学习的结果。

通过这种知识蒸馏的方式,DeepSeek-R1 的推理能力被高效地迁移到了 Qwen-32B 中,使得 Qwen-32B 在推理任务上能够达到与 DeepSeek-R1 相当的性能。


http://www.ppmy.cn/ops/157509.html

相关文章

使用Spring boot的@Transactional进行事务管理

文章目录 一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解 三、核心配置参数1. 传播行为&#xff08;Propagation&#xff09;2. 隔离级别&#xff08;Isolation&#xff09;3. 超时时间&#xff08;Timeout&#xff09;4. 只读模式&#xff08;readOnly&#x…

面试真题 | 超图骏科 C++

构造函数的类型及其描述 在C++中,构造函数是用于初始化对象的特殊成员函数。根据用途和参数的不同,可以将构造函数分为以下几种类型: 默认构造函数(Default Constructor) 描述:没有参数的构造函数。如果类中没有定义任何构造函数,编译器会自动生成一个默认构造函数。但…

JVM 中的各种收集器总结

在 Java 虚拟机&#xff08;JVM&#xff09;的垃圾回收体系中&#xff0c;垃圾收集器扮演着至关重要的角色&#xff0c;它们负责自动回收不再使用的内存空间&#xff0c;以确保 JVM 的高效运行。不同的垃圾收集器具有不同的特点和适用场景&#xff0c;了解它们的工作原理和特性…

随手记:小程序手机号一键登录

获取手机号码的前提&#xff1a; 非个人小程序 认证的小程序 非海外的企业认证 大致流程图 获取对应code <u-button type"primary" shape"circle" open-type"getPhoneNumber" lang"zh_CN" getphonenumber"getPhoneNumber&…

【AIGC魔童】DeepSeek v3提示词Prompt书写技巧

【AIGC魔童】DeepSeek v3提示词Prompt书写技巧 &#xff08;1&#xff09;基础通用公式&#xff08;适用80%场景&#xff09;&#xff08;2&#xff09;问题解决公式&#xff08;决策支持&#xff09;&#xff08;3&#xff09;创意生成公式&#xff08;4&#xff09;学习提升公…

Node.js开发属于自己的npm包(发布到npm官网)

在 Node.js 中开发并发布自己的 npm 包是一个非常好的练习&#xff0c;可以帮助我们更好地理解模块化编程和包管理工具&#xff0c;本篇文章主要阐述如何使用nodejs开发一个属于自己的npm包&#xff0c;并且将其发布在npm官网。在开始之前确保已经安装了 Node.js 和 npm。可以在…

运维_Mac环境单体服务Docker部署实战手册

Docker部署 本小节&#xff0c;讲解如何将前端 后端项目&#xff0c;使用 Docker 容器&#xff0c;部署到 dev 开发环境下的一台 Mac 电脑上。 1 环境准备 需要安装如下环境&#xff1a; Docker&#xff1a;容器MySQL&#xff1a;数据库Redis&#xff1a;缓存Nginx&#x…

Blazor-<select>

今天我们来说说<select>标签的用法&#xff0c;我们还是从一个示例代码开始 page "/demoPage" rendermode InteractiveAuto inject ILogger<InjectPage> logger; <h3>demoPage</h3> <select multiple>foreach (var item in list){<…