一文解释nn、nn.Module与nn.functional的用法与区别

ops/2025/2/9 7:05:38/

🌈 个人主页:十二月的猫-CSDN博客
🔥 系列专栏: 🏀零基础入门PyTorch框架_十二月的猫的博客-CSDN博客

💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 

目录

1. 前言

2. Torch.nn库

3. nn.Module

4. nn.functional

4.1 基本用法 

4.2 常用的functional中的函数

4.2.1 激活函数

4.2.2 损失函数

4.2.3 非线性操作

5. 小例子

6. 总结


1. 前言

  • 👑《零基础入门PyTorch》专栏持续更新中,未来最少文章数量为60篇。由于专栏刚刚建立,促销价为9.9。后续将慢慢恢复原价至99.9🍉【在校大学生】评论区留言并私信我免费订阅
  • 👑《零基础入门PyTorch》专栏主要针对零基础入门的小伙伴。不需要Python基础,不需要深度学习基础,只要你愿意学,这一个专栏将真正让你做到零基础入门。
  • 🔥每例项目都包括理论讲解、数据集、源代码

正在更新中💹💹

🚨项目运行环境:

  • 平台:Window11
  • 语言环境:Python3.8
  • 运行环境1:PyCharm 2021.3
  • 运行环境2:Jupyter Notebook 7.3.2
  • 框架:PyTorch 2.5.1(CUDA11.8)

2. Torch.nn库

简单介绍一下nn库中有那些接口:

一、神经网络类

  1. nn.Module
    nn.Module是所有神经网络类的基类。你可以将其视为一个容器,用于管理神经网络中的其他层。创建自定义的网络类时,你需要从nn.Module继承并实现前向传播方法。
  2. nn.Linear (全连接层)
    nn.Linear实现了一个全连接层,用于将输入张量与权重和偏差相加,然后应用激活函数。它需要指定输入特征的数量和输出特征的数量。
  3. nn.Conv2d (二维卷积层)
    nn.Conv2d实现了一个二维卷积层,用于图像处理任务。它可以指定输入通道数、输出通道数、卷积核大小和步长等参数。

二、特殊函数类(模型建构定义中使用)

  1. nn.MSELoss, nn.CrossEntropyLoss等 (损失函数)
     这些类实现了常见的损失函数,如均方误差损失、交叉熵损失等。它们用于计算模型预测与真实值之间的差异。
  2. nn.ReLU, nn.Tanh, nn.Sigmoid等 (激活函数)
    这些类实现了常见的激活函数,如ReLU、Tanh和Sigmoid等。你可以将它们作为层的输出或添加到自定义层中。

三、固定参数函数类(训练循环中快速使用)

  1. nn.functional (函数)
    nn.functional模块包含了许多实用的函数,用于执行常见的神经网络操作,如前向传播、激活函数计算等。这些函数与nn.Module中的类方法相对应,但更加灵活,因为它们不强制使用nn.Module作为容器。
  • nnModule容器、Linear等各种层、不可学习函数、functional容器
  • nn.Module容器,里面放置Linear、Conv2d等层。
  • nn.functional:函数综合,里面有固定参数的各类函数(损失函数、激活函数等)
  • 重点区别functional容器中的函数 与 不可学习函数

3. nn.Module

        nn.Module 类扮演着核心角色,它是构建任何自定义神经网络层、复杂模块或完整神经网络架构的基础构建块。类似于一个网络容器,我们可以往容器中放入各种层结构

        这里,猫猫基于nn.Module创建一个简单的神经网络模型,实现代码如下:

python">class Net(nn.Module):def __init__(self, input_feature, num_hidden, output_feature):super(Net,self).__init__()self.hidden = nn.Linear(input_feature, num_hidden) #num_hidden隐含层神经元数,也就是输出特征数self.out = nn.Linear(num_hidden,output_feature)def forward(self, x): #net_name(x):自动调用forward函数x = F.relu(self.hidden(x))x = self.out(x) #用激活函数引入非线性成分再经过输出层输出return x

Module:网络容器。定义网络模型、网络功能(前向传播与反向传播)

4. nn.functional

        nn.functional 是PyTorch中一个重要的模块,包含了许多用于构建神经网络的函数(损失函数、激活函数等)。类似于一个函数容器,我们可以从容器中拿出各种神经网络构建使用的函数。与 nn.Module 不同(Module中的Linear、Conv2d等层本质也就是函数,只不过可以学习参数),nn.functional 中的函数不具有可学习的参数

4.1 基本用法 

        在PyTorch中,你只需将输入数据传递给这些函数,并将它们作为网络功能的一部分(记住是网络功能的一部分,不是网络模型的一部分),就可以使用。

网络分为:网络模型(在init中定义就是各种层结构)、网络功能(forward、backward等功能,就是在forward函数中定义)

        这里,猫猫有一个简单的示例,演示如何在一个全连接神经网络中使用ReLU激活函数:

python">import torch.nn as nn
import torch.nn.functional as Fclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc1 = nn.Linear(64, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(self.fc1(x))x = self.fc2(x)return x

nn.functional 的主要优势是它的计算效率和灵活性,因为它允许你以函数的方式直接调用这些操作,而不需要创建额外的层。

4.2 常用的functional中的函数

nn.functional中的函数都是参数不可学习的函数

4.2.1 激活函数

        激活函数是神经网络中的关键组件,它们引入非线性成分,使网络能够拟合复杂的数据。以下是一些常见的激活函数:

  • ReLU
    ReLU是一种简单而有效的激活函数,它将输入值小于零的部分设为零,大于零的部分保持不变。它的数学表达式如下:
python">output = F.relu(input)
  •   Sigmoid
    Sigmoid函数将输入值映射到0和1之间,常用于二分类问题的输出层。它的数学表达式如下:
python">output = F.sigmoid(input)
  • Tanh(双曲正切)
    Tanh函数将输入值映射到-1和1之间,它具有零中心化的特性,通常在循环神经网络中使用。它的数学表达式如下:
python">output = F.tanh(input)

4.2.2 损失函数

  • 交叉熵损失(Cross-Entropy Loss)
    交叉熵损失通常用于多分类问题,计算模型的预测分布与真实分布之间的差异。它的数学表达式如下:
python">loss = F.cross_entropy(input, target)
  • 均方误差损失(Mean Squared Error Loss)
    均方误差损失通常用于回归问题,度量模型的预测值与真实值之间的平方差。它的数学表达式如下:
python">loss = F.mse_loss(input, target)

4.2.3 非线性操作

nn.functional 模块还包含了许多非线性操作,如池化归一化等。

  • 最大池化(Max Pooling)
    最大池化是一种用于减小特征图尺寸的操作,通常用于卷积神经网络中。它的数学表达式如下:
python">output = F.max_pool2d(input, kernel_size)
  • 批量归一化(Batch Normalization)
    批量归一化是一种用于提高训练稳定性和加速收敛的技术。它的数学表达式如下:
python">output = F.batch_norm(input, mean, std, weight, bias)

5. 小例子

        nn.ReLU() 和 F.relu()两种方法都是使用relu激活,只是使用的场景不一样,F.relu()是函数调用,一般使用在foreward函数里。而nn.ReLU()是模块调用,一般在定义网络层的时候使用

python">import torch
import torch.nn as nnclass NET1(nn.Module):def __init__(self):super(NET1, self).__init__()self.conv = nn.Conv2d(3, 16, 3, 1, 1)  # 卷积层,输入3个通道,输出16个通道,卷积核大小3x3,步长1,填充1self.bn = nn.BatchNorm2d(16)  # 批量归一化,处理16个通道self.relu = nn.ReLU()  # ReLU激活函数def forward(self, x):out = self.conv(x)  # 卷积操作out = self.bn(out)  # 批量归一化out = self.relu(out)  # ReLU激活函数return outclass NET2(nn.Module):def __init__(self):super(NET2, self).__init__()self.conv = nn.Conv2d(3, 16, 3, 1, 1)self.bn = nn.BatchNorm2d(16)def forward(self, x):x = self.conv(x)x = self.bn(x)out = F.relu(x)  # 函数的激活函数return out

6. 总结

如果想要学习更多pyTorch的知识,大家可以点个关注并订阅,持续学习、天天进步

你的点赞就是我更新的动力,如果觉得对你有帮助,辛苦友友点个赞,收个藏呀~~~

【在校大学生评论区留言,然后私信我,免费订阅】


http://www.ppmy.cn/ops/156915.html

相关文章

C# 比较两个List集合内容是否相同

在 C# 中&#xff0c;要比较两个 List<T> 集合的内容是否相同&#xff0c;可以通过以下几种方法&#xff1a; 一、非自定义类的元素比较 1. 使用 SequenceEqual 方法&#xff08;顺序和内容都相等&#xff09; 顺序和内容都相等&#xff1a;使用 SequenceEqual。 usin…

Nginx与frp结合实现局域网和公网的双重https服务

背景&#xff1a; 因为局域网内架设了 tiddlywiki、 Nextcloud 等服务&#xff0c;同时也把公司的网站架设在了本地&#xff0c;为了实现局域网直接在局域网内访问&#xff0c;而外部访问通过frps服务器作为反向代理的目的&#xff0c;才有此内容。 实现的效果如下图琐事 不喜欢…

C# OpenCV机器视觉:利用TrashNet实现垃圾分类

在繁华的都市里&#xff0c;垃圾分类成了让人头疼的难题。阿强住在一个老旧小区&#xff0c;每天扔垃圾的时候&#xff0c;他都要对着垃圾桶纠结半天&#xff1a;“这到底是可回收物&#xff0c;还是有害垃圾啊&#xff1f;要是分错了&#xff0c;会不会被罚款&#xff1f;” 阿…

【C语言标准库函数】三角函数

目录 一、头文件 二、函数简介 2.1. 正弦函数&#xff1a;sin(double angle) 2.2. 余弦函数&#xff1a;cos(double angle) 2.3. 正切函数&#xff1a;tan(double angle) 2.4. 反正弦函数&#xff1a;asin(double value) 2.5. 反余弦函数&#xff1a;acos(double value)…

技术晋升读书笔记—人月神话

“人月”可以互换&#xff1f; “九个女人能一个月生下一个孩子&#xff1f;” “向延期的软件项目&#xff0c;临时增加人手&#xff0c;能快速完成&#xff1f;” 《人月神话》这本书堪称软件工程领域的经典之作。弗雷德里克布鲁克斯通过一系列精辟的论述&#xff0c;揭示…

apisix网关ip-restriction插件使用说明

ip-restriction插件可以在网关层进行客户端请求ip拦截。 当然了&#xff0c;一般不推荐使用该方法&#xff0c;专业的事专业工具做。建议有条件&#xff0c;还是上防火墙或者waf来做。 官方文档&#xff1a;ip-restriction | Apache APISIX -- Cloud-Native API Gateway whit…

【机器学习】训练数据集和测试数据集的划分及KNN准确率测试

训练数据集和测试数据集的划分 一、摘要二、机器学习算法性能评估三、train test split的具体实现四、调用KNN算法进行准确率测试五、提升模型性能的策略思考 一、摘要 本博文围绕机器学习算法性能评估方法展开&#xff0c;重点介绍了训练数据集与测试数据集的分离&#xff08…

适用于 Windows 的 Zed 编辑器的非官方稳定版。通过 scoop 或 pwsh 脚本轻松安装。不隶属于 Zed Industries

一、软件介绍&#xff08;文末提供下载&#xff09; Zed&#xff0c;这是一款由 Atom 和 Tree-sitter 的创建者提供的高性能多人 Atom and Tree-sitter.。 二、macOS 和 Linux安装 在 macOS 和 Linux 上&#xff0c;您可以直接下载 Zed 或通过本地包管理器安装 Zed。 本地包…