【C++篇】C++11新特性总结1

ops/2025/2/9 4:29:54/

目录

 

1,C++11的发展历史

2,列表初始化

2.1C++98传统的{}

2.2,C++11中的{}

2.3,C++11中的std::initializer_list 

3,右值引用和移动语义 

3.1,左值和右值

3.2,左值引用和右值引用

 3.3,引用延长生命周期

3.4,左值和右值的参数匹配

 3.5,移动语义

为什么需要移动语义?

移动构造函数与移动赋值运算符

使用场景

常见问题与缺陷

代码示例:自定义类的移动语义

 

3.6,右值引用和移动语义在传参中的提效

3.7,引用折叠

3.8,完美转发 


 

1,C++11的发展历史

C++11是C++的第二个主要版本,并且是从C++98起的最重要更新。C++11是C++编程语言的一个重要版本,于2011年正式发布。它引入了许多新特性和改进,极大地增强了 C++ 的功能和易用性。下面介绍它的一些主要特性:

2,列表初始化

2.1C++98传统的{}

在C++98中一般数组和结构体支持使用{}初始化。

struct point
{
    int x;
    int y;
};
int main()
{
    int arr1[5] = {1,2,3,4,5};
    point p = { 1,2 };
    return 0;
}

2.2,C++11中的{}

struct point
{
    int x;
    int y;
};

class Date
{
public:
    Date(int year = 1, int month = 1, int day = 1)
        :_year(year)
        , _month(month)
        , _day(day)
    {
        cout << "Date(int year int month , int day)" << endl;
    }


    Date(const Date& d)
        :_year(d._year)
        ,_month(d._month)
        ,_day(d._day)
    {
        cout << "Date(const Date& d)" << endl;
    }
private:
    int _year;
    int _month;
    int _day;
};

  • C++11后想统一初始化的方式,试图一切对象皆可使用{}初始化,{}初始化也叫列表初始化
  • 内置类型支持,自定义类型也支持,自定义类型本质是类型转换,中间会产生临时对象,经过编译器优化后变成直接构造

//C++11

//内置类型支持{}初始化
int x = { 2 };

//自定义类型
//本质是{2025,1,1}构造出临时对象,再拷贝给d1,但是编译器优化为直接用{2025,1,1}构造d1
Date d1 = { 2025,1,1 };

//这里的d2引用的是{2024,7,2}的临时对象
const Date& d2 = { 2024,7,2 };

//需要注意的是C++98支持单参数时类型转换,也可以不用加{}
Date d3 = { 2025 };
Date d4 = 2025;

  • {}初始化可以省略=

    //可以省略掉=
    int x2{ 2 };
    point p1{ 1,2 };
    Date d6{ 2025,1,2 };
    const Date& d7{ 2024,8,15 };

  • C++11的列表初始化在许多场景下会带来不少的便利,如容器push/insert多参数构造的对象时,用{}会很方便。

 vector<Date> v;
//有名对象传参
v.push_back(d6);

//匿名对象传参
v.push_back(Date(2025, 1, 2));

//比起有名对象和匿名对象,{}初始化更有性价比
v.push_back({ 2025,1,2 });

2.3,C++11中的std::initializer_list 

  • 上面的初始化已经很方便,但是对于一个容器的初始化来说,还是不太方便。比如一个vector对象,我们想用N个值去初始化,那么我们需要实现多个构造函数才能支持:vector<int> v1={1,2,3},vector<int> v2={1,2,3,4},vector<int> v3={1,2,3,4,5};
  • C++11库中提供了一个std::initializer_list ,这个类的本质是底层开一个数组,将数据拷贝过来,std::initializer_list 中有两个指针分别指向数组的开始和结束。
  • 这时只要我们的容器支持一个std::initializer_list的构造函数,就可以支持多个值的{x1,x2,x3......}的初始化。STL中的 容器支持多个值构成的{x1,x2,x3,......}的初始化,就是通过底层支持std::initiaalizer_list的构造实现的。如下图list和vector的构造函数中都增添了支持std::initializer_list的构造函数。

vector<int> v1 = { 1,2,3,4,5 };
vector<int> v2 = { 1,2,3,4,5,6 };

//这里pair对象的{}初始化和map的initializer_list构造结合到一起了
map<string, string> dict = { {"sort","排序 "},{"string","字符串"} };

3,右值引用和移动语义 

C++98中就有引用的语法,而C++11中新增了右值引用的语法特性,之前的引用叫做左值引用。无论左值引用还是右值引用,都可以理解为是在给变量取别名。

3.1,左值和右值

  1. 左值是一个表示数据的表达式(如变量名或解引用 的指针),一般是持久状态,存储在内存中,我们可以获取它的地址。左值可以出现在赋值符号的左边,也可以是在右边。如果左值用const修饰,就不能给它赋值,但可以取它的地址。
  2. 右值也是一个表示数据的表达式,要么是常量或者是临时对象等,右值可以出现在赋值符号的右边,但不能出现在左边,右值不能取地址。
  3. 左值的英文简写为lvalue,右值的英文简写为rvalue。传统认为它们分别是left value、right value 的缩写。现代C++中,lvalue被解释为loactor value的缩写,可意为存储在内存中、有明确存储地址可以取地址的对象,而rvalue被解释为read value,指的是那些可以提供数据值,但是不可以寻址,例如:临时变量,常量,存储于寄存器中的变量等,也就是说左值和右值的核心区别就是能否取地址

//左值,可以取地址
//以下均为左值
int* p = new int(0);
int b = 1;
const int c = b;
*p = 10;
string  s("1111111");
s[0] = 'x';

double x = 1.1, y = 2.2;
//右值,不能取地址
//以下几个均为右值
10;
x + y;
string("111111");

3.2,左值引用和右值引用

  •  Type& r1=x,Type&& r2=y。其中第一个语句就是左值引用 ,本质是给左值取别名。同理第二个语句就是给右值引用,本质是给右值取别名。
  • 左值引用不能直接引用 右值,需加上const修饰。

//左值,可以取地址
//以下均为左值
int* p = new int(0);
int b = 1;
const int c = b;
*p = 10;
string  s("1111111");
s[0] = 'x';

double x = 1.1, y = 2.2;


//右值,不能取地址
//以下几个均为右值
10;
x + y;
string("111111");


//左值引用,给左值取别名
int& r1 = b;
int*& r2 = p;
int& r3 = *p;
string& r4 = s;
char& r5 = s[0];

 

//左值引用不能直接引用右值,需加上cosnt
const int& rx1 = 10;
const double& rx2 = x + y;
const string& rx3 = string("111111");

  • 右值引用不能直接引用 左值,但可以引用move(左值)。

//左值,可以取地址
//以下均为左值
int* p = new int(0);
int b = 1;
const int c = b;
*p = 10;
string  s("1111111");
s[0] = 'x';

double x = 1.1, y = 2.2;


//右值,不能取地址
//以下几个均为右值
10;
x + y;
string("111111");

 

//右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
string&& rr3 = string("111111");

 

//右值引用不能直接引用 左值,但可以引用 move(左值)
int&& rrx1 = move(b);
int*&& rrx2 = move(p);
int&& rrx3 = move(*p);
string&& rrx4 = (move)(s);
string&& rrx5 = (string&&)s;

  • move是库里面的一个函数模板,本质内部做了强制类型转换,涉及到一些引用折叠的知识

  • 需要注意的是,变量表达式都是左值属性,也就意味着一个右值被右值引用绑定后,右值引用变量是一个左值。

//右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
string&& rr3 = string("111111");

 

//这里要注意的是,rr1的属性是左值,要想被右值引用绑定,除非move一下
int&& a = move(rr1);

 3.3,引用延长生命周期

右值引用可用于为临时对象延长生命周期,const的左值引用也能延长临时对象生存期,但这些对象无法被修改。

string s1 = "Test";
//s1+s1生成临时对象
const string& s2 = s1 + s1; //const左值引用延长生命周期
string&& s3 = s1 + s1;     //右值引用延长生命周期

s3 += "Test";
cout << s3 <<endl;

3.4,左值和右值的参数匹配

  • C++98中,在函数的形参部分,我们会用const 修饰左值引用的方式,这样实参在传递左值和右值时都可以匹配。
  • C++11后,分别重载左值引用,const左值引用和右值引用作为形参的f函数,那么实参时左值,会调用f(左值引用),实参是const 左值引用时,会调用f(const 左值引用),实参是右值引用时,会调用f(右值引用)。

void f(int& x)
{
    cout << "f(int& x)" << endl;
}

void f(const int& x)
{
    cout << "f(const int& x)" << endl;
}

void f(int&& x)
{
    cout << "f(int&& x)" << endl;
}

int main()
{

        int x = 1;
        const int y = x;

 

        f(x);//调用f(int& x)
        f(y);//调用f(const int& x)
        f(3);//调用f(int&& x)
        f(move(x));//调用f(int&& x)

 

        //右值引用变量是左值属性的
        int&& z = 1;
        f(z);      //调用f(int& x)
        f(move(z));//调用f(int&& x)

        return 0;

}

 3.5,移动语义

移动语义是现代编程语言(如C++11及更高版本、Rust)中用于优化资源管理的重要机制。其核心目标是避免不必要的拷贝通过转移资源所有权(而非复制)提升程序性能,尤其在处理动态内存、文件句柄等资源时效果显著。

 

 

为什么需要移动语义?

  • 传统拷贝的缺陷:

对于包含动态内存或系统资源的对象(如std::vector,std::string等),拷贝构造函数会深度复制所有数据,导致性能开销。

  • 移动语义的优化:

直接窃取临时对象(如右值)的资源,避免复制。

 

 

移动构造函数与移动赋值运算符

移动构造函数:接受右值引用参数,转移资源。

class MyClass {
public:// 移动构造函数MyClass(MyClass&& other) noexcept : data_(other.data_) ,size_(other.size_) {other.data_ = nullptr; // 置空原对象,避免重复释放other.size_ = 0;}
private:int* data_;size_t size_;
};

移动赋值运算符:类似移动构造,处理对象赋值。

MyClass& operator=(MyClass&& other) noexcept {if (this != &other) {delete[] data_;       // 释放当前资源data_ = other.data_;  // 转移资源size_ = other.size_;other.data_ = nullptr;other.size_ = 0;}return *this;
}

使用场景

1,显示触发移动语义

使用std:move将左值转化为右值:

std::vector<int> a = {1, 2, 3};
std::vector<int> b = std::move(a); // a变为空,资源转移给b

注意:被移动后的对象处于有效但未定义状态(通常为空),不可再使用其值。

2,返回值优化

编译器自动优化函数返回的临时对象,避免拷贝:

std::vector<int> createVector() {std::vector<int> v = {1, 2, 3};return v; // 编译器可能直接构造v到调用方,无需移动或拷贝
}

3,STL容器的移动支持

标准库容器(如std::vectorstd::string)已实现移动语义:

std::vector<std::string> vec;
std::string s = "data";
vec.push_back(std::move(s)); // 移动s到容器,避免拷贝字符串内容

常见问题与缺陷

1,误用std:move

对局部变量过早移动,导致后续访问未定义

std::vector<int> a = {1, 2, 3};
std::vector<int> b = std::move(a);
std::cout << a.size(); // 未定义行为,a可能为空

2,未实现移动语义的类

  • 若类未定义移动操作,编译器可能回退到拷贝(即使使用std::move)。

  • 规则:若用户定义了拷贝构造函数、拷贝赋值或析构函数,编译器不会自动生成移动操作。

3,异常安全

移动操作应标记为noexcept,否则某些容器(如std::vector)可能仍选择拷贝。

代码示例:自定义类的移动语义

#include <iostream>
#include <utility> // for std::moveclass Buffer {
public:Buffer(size_t size) : size_(size), data_(new int[size]) {}// 移动构造函数Buffer(Buffer&& other) noexcept : size_(other.size_), data_(other.data_) {other.size_ = 0;other.data_ = nullptr;}// 移动赋值运算符Buffer& operator=(Buffer&& other) noexcept {if (this != &other) {delete[] data_;data_ = other.data_;size_ = other.size_;other.data_ = nullptr;other.size_ = 0;}return *this;}~Buffer() { delete[] data_; }private:size_t size_;int* data_;
};int main() {Buffer a(100);Buffer b = std::move(a); // 调用移动构造函数Buffer c(200);c = std::move(b);        // 调用移动赋值运算符return 0;
}

3.6,右值引用和移动语义在传参中的提效

C++11以后,STL容器的push和insert接口增加了右值引用版本。

以vector容器的push_back为例:

当实参是一个左值时,继续调用拷贝构造进行拷贝;当实参是一个右值时,容器内部调用移动构造,提高效率。

3.7,引用折叠

  • C++中不能直接定义引用的引用 ,如int&  && r1=i;这样写会直接报错,通过模板或typedef的类型操作可以构成引用的引用。
  • 通过模板或typedef中的类型操作构成引用的引用时,这时C++11给出了一个引用折叠的规则:右值引用的右值引用折叠成右值引用,所有其他组合均折叠成左值引用。

 

int main()
{
    typedef int& lref;
    typedef int&& rref;
    int n = 0;

 

    lref& r1 = n;      //r1的类型是int&
    lref&& r2 = n;   //r2的类型是int&
    rref& r3 = n;    //r3的类型是int&
    rref&& r4 = 3; //r4的类型是int&&

 

    return 0;
}

  • Function(T&&  t)函数模板程序中,假设实参是int右值,模板参数T推导出是int;实参是int左值,模板参数T推导出是int&,再结合引用折叠规则,就实现了实参是左值,实例化出左值引用版本形参的 Function,实参是右值,实例化出右值引用版本形参的Function。

//根据引用折叠规则,f1实例化后总是一个左值引用
template <class T>
void f1(T& x)
{}

 

//根据引用折叠规则,f2实例化后可以是一个左值引用,也可以是一个右值引用
template <class T>
void f2(T&& x)
{}

 

int main()
{

    //折叠->实例化为  f1(int& x)
    f1<int>(n);
    //f1(0);  //报错

 

    //折叠->实例化为 f1(int& x)
    f1<int&>(n);
    //f1<int&>(0);  //报错

 

    //折叠->实例化为  f1(int& x)
    f1<int&&>(n);
    //f1<int&&>(0);  //报错

 

    //折叠->实例化为  f1(const int& x)
    f1<const int&>(n);
    f1<const int&>(0);

 

    //折叠->实例化为  f1(const int& x)
    f1<const int&&>(n);
    f1<const int&&>(0);

 

    //没有折叠->实例化为  f2(int&& x)
    //f2<int>(n);   //报错
    f2<int>(0);

 

    //折叠->实例化为 f2(int& x)
    f2<int&>(n);
    //f2<int&>(0);  //报错

 

    //折叠->实例化为 f2(int&& x)
    //f2<int&&>(n);  //报错
    f2<int&&>(0);

 

    return 0;
}

  •  像f2这样的函数模板中,(T&&  x)参数看起来是右值引用参数,但是由于引用折叠的规则,他传递左值时就是左值引用,传递右值时就是右值引用,有些地方也把这种函数模板的参数叫做万能引用。

3.8,完美转发 

  • Function(T&&  t)函数模板程序中,传左值实例化以后就是左值引用的Function函数,传右值实例化以后就是右值引用的Function函数。
  • 但是我们在前面讲过,一个变量表达式都是左值属性,也就是一个右值被右值引用表达式绑定以后,右值引用变量表达式是左值属性的。也就是说Function函数中的 t 是左值属性的。如果Function函数中调用一个func函数,那么我们把t传给下一层函数func,那么匹配的都是左值引用的func函数。这里想要保持t对象的原属性,就需要使用完美转发实现。

  • std::forward:用于在转发参数时保持其原始的类别
  • 完美转发forwrad本质是一个函数模板,它主要还是通过引用折叠的方式实现。 

void func(int& x)
{
    cout << "左值引用" << endl;
}

 

void func(const int& x)
{
    cout << "const 左值引用" << endl;
}

 

void func(int&& x)
{
    cout << "右值引用" << endl;
}

 

void func(const int&& x)
{
    cout << "const 右值引用" << endl;
}

 

template <class T>
void Function(T&& t)
{
    func(t);
}

 

int main()
{
    Function(10);  //10是右值  Function(int&& t)    右值

 

    int a;、
    Function(a);   //a是左值    Function(int& t)    左值

    Function(move(a)); //       Function(int&& t)   右值

 

    const int b = 8;

    Function(b);    //Function(const int& t)         const左值
    Function(move(b));  //Function(const int&& t)    const 右值

 

    return 0;
}

 

上面的代码是没有使用 完美转发的场景,运行结果如下:

 

可以看出,在将t传给下一层的func函数时,匹配的都是左值引用。

 经过完美转发后的代码和运行结果:

template <class T>
void Function(T&& t)
{
    //func(t);
    func(forward<T>(t));
}

 

 


http://www.ppmy.cn/ops/156888.html

相关文章

PyTorch torch.unbind、torch.split 和 torch.chunk函数介绍

pytorch中 torch.unbind、torch.split 和 torch.chunk等函数可用于张量的拆分操作。 1. torch.unbind 功能说明&#xff1a; torch.unbind 沿指定的维度将张量“解包”为多个张量&#xff0c;返回一个元组。解包后被操作的那个维度会消失&#xff0c;每个输出张量的维度数会比…

VUE之插槽

1、默认插槽 <template><div class"father"></div><h3>父组件</h3><div class"content"><Category title"热门游戏列表"><ul><li v-for"g in games" :key"g.id">{{…

基于ArcGIS的SWAT模型+CENTURY模型模拟流域生态系统水-碳-氮耦合过程研究

流域是一个相对独立的自然地理单元&#xff0c;它是以水系为纽带&#xff0c;将系统内各自然地理要素连结成一个不可分割的整体。碳和氮是陆地生态系统中最重要的两种化学元素&#xff0c;而在流域系统内&#xff0c;水-碳-氮是相互联动、不可分割的耦合体。随着流域内人类活动…

使用 Docker 部署 RabbitMQ 的详细指南

使用 Docker 部署 RabbitMQ 的详细指南 在现代应用程序开发中&#xff0c;消息队列系统是不可或缺的一部分。RabbitMQ 是一个流行的开源消息代理软件&#xff0c;它实现了高级消息队列协议&#xff08;AMQP&#xff09;。本文将详细介绍如何使用 Docker 部署 RabbitMQ&#xf…

基于微信小程序的校园水电费管理平台设计与实现

目录 摘要 系统展示 技术介绍 MySQL数据库 Vue框架 代码实现 管理员实现登录后端代码 连接数据库 前端代码实现 获取源码 摘要 随着社会的发展&#xff0c;社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用…

快速上手——.net封装使用DeekSeek-V3 模型

📢欢迎点赞 :👍 收藏 ⭐留言 📝 如有错误敬请指正,赐人玫瑰,手留余香!📢本文作者:由webmote 原创📢作者格言:新的征程,用爱发电,去丈量人心,是否能达到人机合一?开工大吉 新的一年就这么水灵灵的开始了,在这里,祝各位读者新春快乐,万事如意! 新年伊…

vulkan学习(一)

opengl相对与vulkan不是一个级别的东西&#xff0c;opengl几十行代码就可以绘制一个简单的物体&#xff0c;而vulkan需要几百行才能绘制&#xff0c;所以vulkan的学习曲线比较陡峭&#xff0c;本人经过也经过一个很长的时间的断断续续学习对vulkan有了一些认识&#xff0c;在这…

C++中的pair,pair和map的结合

文章目录 1. pair 的基本用法语法&#xff1a;示例&#xff1a; 2. pair 和 map 的结合map 的基本用法语法&#xff1a;示例&#xff1a; 3. pair 和 map 中的具体应用(1) map 中的 pair 存储(2) insert 方法插入 pair(3) 使用 auto 获取 pair 对象(4) 使用 pair 和 map 返回多…