Airflow:深入理解Apache Airflow Task

ops/2025/2/8 4:20:15/

Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探索不同类型的任务,如何创建它们,以及各种最佳实践。
在这里插入图片描述

Airflow任务介绍

任务是Airflow工作流(也称为有向无环图或DAG)中最小的工作单元。任务表示单个操作、功能或计算,是更大工作流的一部分。在数据管道上下文中,任务可能包括数据提取、转换、加载或任何其他数据处理操作。

任务类型

Apache Airflow中的三种基本任务类型:操作员,传感器和taskflow装饰任务。

  1. Operators

Operator是预定义的任务模板,可以很容易地组合起来创建大多数dag。它们代表单一的工作或操作单元,并且气流具有广泛的内置Operator,以适应各种应用场景。

  1. Sensors

Sensor是Operator的一个独特子类,它专注于在继续工作流程之前等待外部事件的发生。传感器对于确保在任务开始执行之前满足某些条件是必不可少的。

  1. TaskFlow-decorated任务

TaskFlow是在Airflow 2.0中引入的新特性,它支持使用@task装饰器将Python函数打包为任务,从而简化了创建自定义任务的过程。这种方法允许你在dag内定义内联任务,从而提高了代码的可重用性和可读性。

创建任务

要创建任务,请实例化操作符并提供所需的参数。下面是使用PythonOperator创建任务的示例:

from airflow import DAG 
from airflow.operators.python import PythonOperator 
from datetime import datetime def my_function(): print("Hello, Airflow!") dag = DAG( 'my_dag', start_date=datetime(2023, 4, 5), schedule_interval='@daily' ) task = PythonOperator( task_id='my_task', python_callable=my_function, dag=dag ) 

my_function 是Python普通函数,通过python_callable参数赋值,把python函数转为Airflow任务。

任务依赖关系

DAG中的任务可以具有依赖关系,这些依赖关系定义了它们执行的顺序。要设置依赖关系,可以使用set_upstream()和set_downstream()方法或bitshift操作符(<<和>>):

task_a = DummyOperator(task_id='task_a', dag=dag) 
task_b = DummyOperator(task_id='task_b', dag=dag) task_a.set_downstream(task_b) 
# or 
task_a >> task_b 

任务重试和失败处理

Airflow支持配置重试次数和任务重试之间的延迟。这可以在创建任务时使用retries和retry_delay参数来完成:

from datetime import timedelta task = PythonOperator( task_id='my_task', python_callable=my_function, retries=3, retry_delay=timedelta(minutes=5), dag=dag 
) 

任务最佳实践

以下是一些在Apache Airflow中处理任务的最佳实践:

  1. 保持任务幂等:确保任务在给定相同输入的情况下产生相同的输出,而不管它们执行了多少次。
  2. 使任务更小、更集中:将复杂的任务分解成更小、更易于管理的单元。
  3. 使用任务模板和宏:利用Jinja模板和Airflow宏使任务更具动态性和可重用性。
  4. 监控和记录任务性能:利用Airflow的内置监控和记录功能来密切关注任务性能并解决任何问题。
  5. 定义任务超时时间:为您的任务设置适当的超时时间,以防止它们无限期运行并消耗资源。
  6. 在任务之间使用XCom进行通信:Airflow的XCom功能允许任务交换少量数据。将此功能用于任务间通信,而不是依赖于外部存储或全局变量。
  7. 测试你的任务:编写任务单元测试,以确保它们按预期工作,并在开发过程的早期发现任何问题。
  8. 编写任务文档:给任务添加清晰简洁的文档,解释它们做什么,以及它们的行为或配置的任何重要细节。

最后总结

任务是Apache Airflow中的基本构建块,使您能够通过组合各种Operator和配置来创建强大而灵活的工作流。通过遵循本文中概述的最佳实践并利用Airflow提供的众多特性,你可以创建高效、可维护且可靠的数据管道。


http://www.ppmy.cn/ops/156632.html

相关文章

mysql重学(一)mysql语句执行流程

思考 一条查询语句如何执行&#xff1f;mysql语句中若列不存在&#xff0c;则在哪个阶段报错一条更新语句如何执行&#xff1f;redolog和binlog的区别&#xff1f;为什么要引入WAL什么是Changbuf&#xff1f;如何工作写缓冲一定好吗&#xff1f;什么情况会引发刷脏页删除语句会…

队列Queue原理及其C语言实现

原理 队列是一种 先进先出&#xff08;FIFO, First In First Out&#xff09; 的线性数据结构&#xff0c;操作限制在两端&#xff1a; 队尾&#xff08;Rear&#xff09;&#xff1a;仅允许插入元素&#xff08;入队&#xff0c;enqueue&#xff09;。 队头&#xff08;Fron…

深度整理总结MySQL——行记录存储

行记录存储 前言InnoDB页简介数据存放在哪个空间表空间的结构是怎么样的行(row)页(page)区(Extent)段(Segment) InnoDB行格式COMPACT行格式记录的额外信息变长字段长度列表为什么变长字段长度列表按逆序存放每个数据库表的行格式都有「变长字段字节数列表」吗? NULL值每个数据…

PHP JSON操作指南

PHP JSON操作指南 概述 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。PHP作为一门流行的服务器端脚本语言&#xff0c;支持对JSON数据进行读取、编写和解析。本文将…

(2025,LVLM,高分辨率图像处理,子图划分,全局语义引导注意力权重分配)

Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models 目录 1. 引言 2. 本文贡献 3. 方法 3.1 现有高分辨率图像处理方法 3.2 全局语义引导权重分配&#xff08;GSWA&#xff09; 4. 实验结果 4.1 通用基准测试…

ollama部署deepseek实操记录

1. 安装 ollama 1.1 下载并安装 官网 https://ollama.com/ Linux安装命令 https://ollama.com/download/linux curl -fsSL https://ollama.com/install.sh | sh安装成功截图 3. 开放外网访问 1、首先停止ollama服务&#xff1a;systemctl stop ollama 2、修改ollama的servic…

flowable expression和json字符串中的双引号内容

前言 最近做项目&#xff0c;发现了一批特殊的数据&#xff0c;即特殊字符"&#xff0c;本身输入双引号也不是什么特殊的字符&#xff0c;毕竟在存储时就是正常字符&#xff0c;只不过在编码的时候需要转义&#xff0c;转义符是\&#xff0c;然而转义符\也是特殊字符&…

基于联合概率密度与深度优化的反潜航空深弹命中概率模型研究摘要

前言:项目题材来自数学建模2024年的D题,文章内容为笔者和队友原创,提供一个思路。 摘要 随着现代军事技术的发展,深水炸弹在特定场景下的反潜作战效能日益凸显,如何最大化的发挥深弹威力也成为重要研究课题。本文针对评估深弹投掷落点对命中潜艇概率的影响进行分析,综合利…