二维前缀和:高效求解矩阵区域和问题

ops/2025/2/7 21:10:35/

在处理二维矩阵时,频繁计算某一子矩阵的和是一个常见的操作。传统的做法是直接遍历该子矩阵,时间复杂度较高。当矩阵非常大且有大量的查询时,直接计算将变得低效。为了提高效率,我们可以通过 二维前缀和 技巧在常数时间内解决这个问题。

本文将通过一个具体的 Java 实现,介绍如何使用二维前缀和优化子矩阵求和问题。

关键是二维前缀和数组的构造,以及求解区域和的代码部分

测试链接:https://leetcode.cn/problems/range-sum-query-2d-immutable/

一、前缀和的概念

前缀和是解决区间和问题的经典技巧。在一维数组中,前缀和数组 prefixSum 用于存储从数组开头到当前位置的累加和,这样我们可以在 O(1) 时间内查询任意区间 [l, r] 的和。

二维前缀和的思想类似,它在二维矩阵上扩展了前缀和的概念。给定一个 m x n 的矩阵 matrix,二维前缀和数组 sum 中的元素 sum[i][j] 表示从左上角 (0, 0)(i-1, j-1) 的所有矩阵元素的和。通过构造这个前缀和数组,我们能够在常数时间内查询任意子矩阵的元素和。

二、二维前缀和的计算

2.1 二维前缀和的构建

对于一个 m x n 的矩阵 matrix,我们定义一个同样大小的前缀和数组 sum,其中 sum[i][j] 表示从 (0, 0)(i-1, j-1) 的矩阵元素和。构造 sum[i][j] 的公式如下:

sum[i][j] = matrix[i-1][j-1] + sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1]
  • matrix[i-1][j-1]:当前矩阵元素。
  • sum[i-1][j]:上方区域的和。
  • sum[i][j-1]:左侧区域的和。
  • sum[i-1][j-1]:左上角区域重复计算的部分,需要减去。

这样通过累加计算每个位置的前缀和,最终可以在常数时间内求出任意子矩阵的和。

2.2 子矩阵和的查询

通过上述方式构造的二维前缀和数组,可以快速计算任意子矩阵的元素和。给定一个矩阵区域的左上角 (row1, col1) 和右下角 (row2, col2),其和可以通过以下公式计算:

sumRegion(row1, col1, row2, col2) = sum[row2+1][col2+1]- sum[row1][col2+1]- sum[row2+1][col1]+ sum[row1][col1]

三、Java 实现

以下是使用二维前缀和优化矩阵区域和查询的 Java 实现。我们将使用 NumMatrix 类来实现:

public class NumMatrix {private int[][] sum;// 构造函数:计算二维前缀和public NumMatrix(int[][] matrix) {int n = matrix.length;int m = matrix[0].length;sum = new int[n + 1][m + 1];  // 创建一个多出一行一列的前缀和数组// 填充前缀和数组for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];}}}// 查询子矩阵的和public int sumRegion(int row1, int col1, int row2, int col2) {row1++;col1++;row2++;col2++;return sum[row2][col2] - sum[row1 - 1][col2] - sum[row2][col1 - 1] + sum[row1 - 1][col1 - 1];}public static void main(String[] args) {// 示例矩阵int[][] matrix = {{3, 2, 1, 4},{1, 5, 3, 2},{4, 2, 2, 1},{7, 4, 3, 5}};// 创建 NumMatrix 对象NumMatrix numMatrix = new NumMatrix(matrix);// 查询子矩阵 (1,1) 到 (2,2) 的和System.out.println(numMatrix.sumRegion(1, 1, 2, 2));  // 输出:15}
}
3.1 代码分析
  1. 构造函数NumMatrix(int[][] matrix) 用来构造二维前缀和数组 sum。首先,构造一个大小为 (n+1) x (m+1) 的数组,额外的行和列用于处理边界问题。然后通过双重循环填充 sum 数组,利用之前的公式逐步计算前缀和

  2. sumRegion 方法sumRegion(int row1, int col1, int row2, int col2) 用于查询子矩阵 (row1, col1)(row2, col2) 的和。通过前缀和的计算公式,能够在常数时间内返回结果。

  3. 主函数:在 main 方法中,我们定义了一个 matrix,并创建了 NumMatrix 对象来处理前缀和的计算。然后调用 sumRegion 方法查询从 (1,1)(2,2) 的子矩阵和,输出为 15

四、时间复杂度

  • 前缀和数组的构造:构造二维前缀和数组的时间复杂度是 O(m * n),其中 mn 分别是矩阵的行数和列数。
  • 查询子矩阵和:查询的时间复杂度是 O(1),因为我们只需要做常数次的数组访问和加减操作。

五、应用场景

二维前缀和特别适用于以下场景:

  1. 静态矩阵区域求和:如果我们需要对矩阵中多个子矩阵进行求和,二维前缀和能够显著减少查询时间。
  2. 优化算法中的区间求和:在一些动态规划或分治算法中,二维前缀和可以高效地处理二维区间和查询。

http://www.ppmy.cn/ops/156541.html

相关文章

保姆级教程Docker部署Zookeeper官方镜像

目录 1、安装Docker及可视化工具 2、创建挂载目录 3、运行Zookeeper容器 4、Compose运行Zookeeper容器 5、查看Zookeeper运行状态 6、验证Zookeeper是否正常运行 1、安装Docker及可视化工具 Docker及可视化工具的安装可参考&#xff1a;Ubuntu上安装 Docker及可视化管理…

C# 中 Guid类 使用详解

总目录 前言 C# 中的 Guid 类&#xff08;全局唯一标识符&#xff0c;Globally Unique Identifier&#xff09;用于生成和操作 128 位的唯一标识符。它在需要唯一标识的场景&#xff08;如数据库主键、分布式系统等&#xff09;中广泛使用。 一、什么是 Guid Guid&#xff08…

开源音乐管理软件Melody

本文软件由网友 heqiusheng 推荐。不过好像已经是一年前了 &#x1f602; 简介 什么是 Melody &#xff1f; Melody 是你的音乐精灵&#xff0c;旨在帮助你更好地管理音乐。目前的主要能力是帮助你将喜欢的歌曲或者音频上传到音乐平台的云盘。 主要功能包括&#xff1a; 歌曲…

Spring Task之Cron表达式

&#x1f31f; Spring Task高能预警&#xff1a;你以为的Cron表达式可能都是错的&#xff01;【附实战避坑指南】 开篇暴击&#xff1a;为什么你的定时任务总在凌晨3点翻车&#xff1f; “明明设置了0 0 2 * * ?&#xff0c;为什么任务每天凌晨3点执行&#xff1f;” —— 来…

【技海登峰】Kafka漫谈系列(一)Kafka服务集群的核心组件

【技海登峰】Kafka漫谈系列(一)Kafka服务端的核心组件 一. Broker 完整的Kafka服务是集群Cluster结构,其由多个Kafka服务节点组成,每个物理节点即称为Broker,在实际部署中,每个Broker节点都是一个Kafka实例的服务进程。Broker是Kafka实际的运行单元,负责请求处理、数据…

LeetCode-全排序

题目描述 给定一个可包含重复数字的序列 nums &#xff0c;按任意顺序 返回所有不重复的全排列。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,2] 输出&#xff1a; [[1,1,2],[1,2,1],[2,1,1]]示例 2&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[1,2…

iOS文字滚动:使用CATextLayer实现的跑马灯(附源码)

引言 在 iOS 开发中&#xff0c;跑马灯效果&#xff08;Marquee Effect&#xff09;是一种常见的文本滚动效果&#xff0c;广泛应用于广告展示、动态消息栏、通知推送等场景。通过跑马灯效果&#xff0c;我们能够以流畅的方式展示超出屏幕范围的文本&#xff0c;提升用户体验。…

【工具篇】ChatGPT:开启人工智能新纪元

一、ChatGPT 是什么 最近,ChatGPT 可是火得一塌糊涂,不管是在科技圈、媒体界,还是咱们普通人的日常聊天里,都能听到它的大名。好多人都在讨论,这 ChatGPT 到底是个啥 “神器”,能让大家这么着迷?今天咱就好好唠唠。 ChatGPT,全称是 Chat Generative Pre-trained Trans…