OpenCV:特征检测总结

ops/2025/2/6 17:13:49/

目录

一、什么是特征检测?

二、OpenCV 中的常见特征检测方法

1. Harris 角点检测

2. Shi-Tomasi 角点检测

3. Canny 边缘检测

4. SIFT(尺度不变特征变换)

5. ORB

三、特征检测的应用场景

1. 图像匹配

2. 运动检测

3. 自动驾驶

4. 生物特征识别

四、总结


一、什么是特征检测?

特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。

特征检测的基本类型:

  1. 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
  2. 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
  3. 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。

二、OpenCV 中的常见特征检测方法

OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。

1. Harris 角点检测

Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。

核心思想:

  • 计算图像窗口在不同方向上的灰度变化。
  • 若在所有方向上灰度变化较大,则认为该点是角点。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

 

应用场景:

  • 目标跟踪
  • 运动检测
  • 物体识别

2. Shi-Tomasi 角点检测

Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):x, y = corner.ravel()cv2.circle(image, (x, y), 5, (0, 255, 0), -1)# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

应用场景:

  • 运动跟踪(如光流跟踪)
  • 结构分析

3. Canny 边缘检测

Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。

核心步骤:

  1. 高斯模糊去噪。
  2. 计算梯度,检测边缘。
  3. 通过非极大值抑制减少边缘宽度。
  4. 通过双阈值去除弱边缘。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 车道检测
  • 物体轮廓提取
  • OCR(光学字符识别)

4. SIFT(尺度不变特征变换)

SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:  

 

应用场景:

  • 图像匹配(如拼接全景图)
  • 物体识别
  • 机器人导航

5. ORB

ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 低计算资源环境(如嵌入式设备)
  • 物体跟踪
  • 视觉 SLAM(同时定位与地图构建)

三、特征检测的应用场景

1. 图像匹配

  • 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。

2. 运动检测

  • 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。

3. 自动驾驶

  • Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。

4. 生物特征识别

  • SIFT、ORB 可用于 指纹识别、人脸识别。

四、总结

方法主要用途特点
Harris 角点角点检测计算简单,适用于运动检测
Shi-Tomasi 角点改进的角点检测适用于光流跟踪等任务
Canny 边缘边缘检测精确提取物体轮廓
SIFT关键点检测、图像匹配尺度、旋转不变,精度高
ORB关键点检测、实时匹配适合移动端,速度快

如何选择特征检测方法?

  • 如果需要快速检测角点:Shi-Tomasi、Harris。
  • 如果需要检测物体轮廓:Canny。
  • 如果需要进行图像匹配:SIFT、ORB。
  • 如果需要在低计算资源环境下运行:ORB 是更好的选择。

😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!


http://www.ppmy.cn/ops/156200.html

相关文章

汇编知识点汇总

汇编的组成 汇编指令 数据处理指令 数据搬移指令数据位移指令位运算指令算术运算指令比较指令 跳转指令内存读写指令状态寄存器传送指令异常产生指令协处理器指令 伪操作 在程序编译过程中起到编译引导作用的内容 .text .global .if .else .endif 伪指令 不是汇编指令&…

jdk8 G1收集器怎么手动调优

在 JDK 8 中,手动调优 G1 垃圾收集器可以通过以下步骤和参数进行: 1. 启用 G1 垃圾收集器 要启用 G1 垃圾收集器,需要在 JVM 启动参数中添加以下选项: -XX:UseG1GC 这个参数告诉 JVM 使用 G1 作为垃圾收集器。 2. 设置堆内存…

国防科大:双目标优化防止LLM灾难性遗忘

📖标题:How to Complete Domain Tuning while Keeping General Ability in LLM: Adaptive Layer-wise and Element-wise Regularization 🌐来源:arXiv, 2501.13669 🌟摘要 🔸大型语言模型(LLM…

了解linux-5.4.31/drivers/gpio/gpiolib-devres.c中的devm_gpiod_get_optional()函数

1、打开“drivers/gpio/gpiolib-devres.c” /** 获取GPIO线的索引,查找“设备资源”,分配“设备资源数据”,注册“设备资源”; * devm_gpiod_get_optional - Resource-managed gpiod_get_optional() * dev: GPIO consumer * con_id: function within the GPIO consumer * fla…

LabVIEW自定义测量参数怎么设置?

以下通过一个温度采集案例,说明在 LabVIEW 中设置自定义测量参数的具体方法: 案例背景 ​ 假设使用 NI USB-6009 数据采集卡 和 热电偶传感器 监测温度,需自定义以下参数: 采样率:1 kHz 输入量程:0~10 V&a…

【数据结构】_链表经典算法OJ:相交链表

目录 1. 题目链接及描述 2. 解题思路 2.1 思路1:一个链表把另外一个链表的结点逐个轮一遍 2.2 思路2:截断长链表,从距离交点结点前等距处开始同时遍历(本题解法) 3. 程序 关于解题程序的细节: 3.1…

暴力破解与验证码安全

目录 前言 暴力破解:简单粗暴的黑客攻击手段 暴力破解的前提条件 暴力破解的定义与原理 常见的暴力破解工具 暴力破解的常见场景 暴力破解的危害 验证码:抵御暴力破解的第一道防线 验证码的定义与作用 验证码的工作原理 验证码的类型 验证码…

JDK17主要特性

JDK 17,也被称为Java 17或Java Platform, Standard Edition 17,是Java编程语言的第十七个主要版本,由Oracle公司在2021年9月发布。Java 17是一个长期支持(LTS,Long-Term Support)版本,这意味着它…