浅谈量化感知训练(QAT)

ops/2025/2/6 15:43:24/

1. 为什么要量化?

假设你训练了一个神经网络模型(比如人脸识别),效果很好,但模型太大(比如500MB),手机根本跑不动。于是你想压缩模型,让它变小、变快。
最直接的压缩方法:把模型参数(权重)从32位浮点数(FP32,高精度)转成8位整数(INT8,低精度)。
👉 但问题来了:直接压缩(训练后量化,PTQ)会导致精度暴跌,就像把高清图片压缩成马赛克,关键细节全丢了!

2. QAT的核心思想——“考试前先做模拟题”

QAT的核心:在训练阶段,就提前让模型“体验”被压缩后的效果(模拟低精度计算),这样模型自己会调整参数,尽量适应压缩后的环境。
类比:考试前做模拟题,提前适应真实考试的环境,正式考试时就不慌了。

3. QAT具体怎么做?——三步走

第1步:正常训练模型(FP32)
  • 就像学生先学基础知识,打好基础。

第2步:插入“模拟压缩”操作
  • 在训练过程中,假装模型已经被压缩了。比如:

    • 对权重:把FP32的数值“假装”转成INT8,再转回FP32(伪量化)。

    • 对激活值(每层的输出):同样模拟INT8计算。

  • 关键细节

    • 伪量化会引入误差(比如四舍五入),但误差会被反向传播“感知”到,模型会自我调整。

    • 反向传播时,用**直通估计器(STE)**绕过量化操作的梯度问题(简单理解:假装量化没误差,直接传梯度)。

第3步:导出真正的量化模型
  • 训练完成后,模型已经学会了在低精度下工作,此时真正转成INT8,精度损失很小。

4. 卷积层的QAT

假设一个卷积层的权重是FP32,正常计算流程是:
输入 → 卷积计算(FP32) → 输出
QAT模式下
输入 → 卷积计算(FP32) → 伪量化(模拟INT8) → 反量化(转回FP32) → 输出

  • 前向传播:模型以为自己在用INT8计算(实际底层还是FP32)。

  • 反向传播:梯度直接作用于原始的FP32权重,绕过量化误差(STE的作用)。

5. QAT vs PTQ 

  • PTQ(训练后量化):直接压缩模型,像强行把大人衣服改小,可能不合身。

  • QAT(量化感知训练):边改衣服边让模型试穿,直到改好的衣服完全合身。
    结果:QAT的模型压缩后精度更高,尤其对复杂任务(如目标检测)优势明显。

6. QAT的代价

  • 计算成本:训练时间变长(因为要模拟量化误差)。

  • 调参技巧:学习率、量化范围等参数需要仔细调整。

  • 硬件适配:量化方案必须匹配部署硬件(比如手机芯片只支持特定格式)。

7.QAT的本质

QAT = 提前让模型“体验”被压缩的感觉 + 边体验边学习适应
就像运动员在高原训练(模拟缺氧环境),比赛时到高原就能发挥更好。
掌握QAT,你就能帮大公司把AI模型塞进手机、摄像头甚至手表里!


http://www.ppmy.cn/ops/156185.html

相关文章

git基础使用--4---git分支和使用

文章目录 git基础使用--4---git分支和使用1. 按顺序看2. 什么是分支3. 分支的基本操作4. 分支的基本操作4.1 查看分支4.2 创建分支4.3 切换分支4.4 合并冲突 git基础使用–4—git分支和使用 1. 按顺序看 -git基础使用–1–版本控制的基本概念 -git基础使用–2–gti的基本概念…

Linux概述

Linux下开发项目 JavaEE 大数据 Python PHP C/C Go Linux运维工程师 服务器的规划、调试优化,系统的日程监控,故障的处理,对数据的备份和恢复。运维工程师往往管理服务器集群 Linux嵌入式工程师 驱动的开发,嵌入式的系统…

Maven 项目的基本结构

Maven 项目采用了标准的目录结构,旨在统一项目组织方式,提高可维护性,并且让不同的开发人员更容易理解和使用项目。通过遵循约定的目录结构,Maven 可以自动化管理项目的构建过程,并简化构建、测试、部署等任务。 1. M…

【LeetCode 刷题】贪心算法(2)-进阶

此博客为《代码随想录》二叉树章节的学习笔记,主要内容为贪心算法进阶的相关题目解析。 文章目录 135. 分发糖果406. 根据身高重建队列134. 加油站968. 监控二叉树 135. 分发糖果 题目链接 class Solution:def candy(self, ratings: List[int]) -> int:n len…

提示词实践总结

目录 一、要求创建SqlServer表(ChatGpt) 二、要求生成多层架构代码(Cursor) 三、要求修改方法返回值类型(Cursor) 四、要求修改方法入参(Cursor) 五、复杂的多表关联生成&#…

实验十四 EL和JSTL

实验十四 EL和JSTL 一、实验目的 1、掌握EL表达式的使用 2、掌握JSTL的使用 二、实验过程 1、在数据库Book中建立表Tbook,包含图书ID,图书名称,图书价格。实现在bookQuery.jsp页面中模糊查询图书,如果图书的价格在50元以上&#…

AI回答 | spring,springboot,spring MVC,servlet, spring web之间的联系与支持

我的问题是:spring,springboot,spring MVC,servlet, spring web之间的联系与支持?我希望知道这些技术之间的演变、来龙去脉。如果中间穿插着关联的技术也请告诉我。【通过AI我理解到这是个spring生态问题,我…

Vim的基础命令

移动光标 H(左) J(上) K(下) L(右) $ 表示移动到光标所在行的行尾, ^ 表示移动到光标所在行的行首的第一个非空白字符。 0 表示移动到光标所在行的行首。 W 光标向前跳转一个单词 w光标向前跳转一个单词 B光标向后跳转一个单词 b光标向后跳转一个单词 G 移动光标到…