AI常见的算法和例子

ops/2025/2/1 7:48:14/

人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:

例子代码:纠结哥/pytorch_learn


1. 机器学习 (Machine Learning)

监督学习 (Supervised Learning)
  • 线性回归 (Linear Regression):用于预测连续值,如房价预测。
  • 逻辑回归 (Logistic Regression):用于分类问题,如垃圾邮件检测。
  • 支持向量机 (SVM):用于分类和回归,如文本分类。
  • k近邻 (k-Nearest Neighbors, k-NN):基于最近邻数据进行分类或回归。
  • 决策树 (Decision Tree):树形结构的分类与回归方法。
  • 随机森林 (Random Forest):基于多棵决策树的集成方法。
  • 梯度提升 (Gradient Boosting):如 XGBoost、LightGBM,用于高效的分类与回归。
无监督学习 (Unsupervised Learning)
  • k均值聚类 (k-Means Clustering):将数据分成多个簇。
  • 层次聚类 (Hierarchical Clustering):构建层次结构的簇。
  • 主成分分析 (PCA):用于数据降维和特征提取。
  • 独立成分分析 (ICA):用于信号分离或降维。
半监督学习 (Semi-supervised Learning)
  • 使用少量有标签数据和大量无标签数据,如自训练、自编码器(Autoencoder)。
强化学习 (Reinforcement Learning)
  • Q学习 (Q-Learning):基于价值函数的强化学习算法
  • 深度Q网络 (DQN):结合深度学习的强化学习。
  • 策略梯度 (Policy Gradient):直接优化策略的强化学习方法。

2. 深度学习 (Deep Learning)

  • 前馈神经网络 (Feedforward Neural Networks, FNN):最基本的神经网络架构。
  • 卷积神经网络 (Convolutional Neural Networks, CNNs):主要用于图像处理,如目标检测、图像分类。
  • 循环神经网络 (Recurrent Neural Networks, RNNs):处理序列数据,如时间序列分析、文本生成。
    • 长短期记忆网络 (LSTM):RNN的改进,解决长期依赖问题。
    • 门控循环单元 (GRU):LSTM的轻量化版本。
  • 生成对抗网络 (Generative Adversarial Networks, GANs):生成高质量数据,如图像生成。
  • 变分自编码器 (Variational Autoencoder, VAE):用于生成和降维。
  • 图神经网络 (Graph Neural Networks, GNNs):处理图结构数据。

3. 自然语言处理 (Natural Language Processing, NLP)

  • 词嵌入 (Word Embeddings):如 Word2Vec、GloVe,用于表示词语的语义。
  • 循环神经网络 (RNN)LSTM/GRU:处理文本序列。
  • Transformer
    • BERT (Bidirectional Encoder Representations from Transformers):双向上下文理解模型。
    • GPT (Generative Pre-trained Transformer):生成式模型,用于文本生成。
  • 情感分析算法:基于分类的模型,用于提取情感极性。
  • 文本摘要算法:如 Seq2Seq 模型。

4. 计算机视觉 (Computer Vision)

  • 边缘检测算法:如 Canny、Sobel,用于图像预处理。
  • 目标检测算法:如 YOLO(You Only Look Once)、Faster R-CNN。
  • 图像分割算法:如 UNet、Mask R-CNN。
  • 人脸识别算法:如 OpenCV 的 Haar Cascades、深度学习的 FaceNet。
  • 图像生成与修复:如 GAN。

5. 优化算法

  • 梯度下降 (Gradient Descent):如 SGD、Momentum、Adam、RMSProp。
  • 遗传算法 (Genetic Algorithm):基于自然选择的优化方法。
  • 模拟退火算法 (Simulated Annealing):模仿物理退火过程。

6. 推荐系统算法

  • 协同过滤 (Collaborative Filtering):基于用户或物品的协作关系。
  • 矩阵分解 (Matrix Factorization):如 SVD,用于推荐。
  • 基于深度学习的推荐算法:如 DeepFM、Wide&Deep。

http://www.ppmy.cn/ops/154681.html

相关文章

CAN总线数据采集与分析

CAN总线数据采集与分析 目录 CAN总线数据采集与分析1. 引言2. 数据采集2.1 数据采集简介2.2 数据采集实现3. 数据分析3.1 数据分析简介3.2 数据分析实现4. 数据可视化4.1 数据可视化简介4.2 数据可视化实现5. 案例说明5.1 案例1:数据采集实现5.2 案例2:数据分析实现5.3 案例3…

Android --- CameraX讲解

预备知识 surface surfaceView SurfaceHolder surface 是什么? 一句话来说: surface是一块用于填充图像数据的内存。 surfaceView 是什么? 它是一个显示surface 的View。 在app中仍在 ViewHierachy 中,但在wms 中可以理解为…

笔记:使用ST-LINK烧录STM32程序怎么样最方便?

一般板子在插件上, 8脚 3.3V;9脚 CLK;10脚 DIO;4脚GND ST_Link 19脚 3.3V;9脚 CLK;7脚 DIO;20脚 GND 烧录软件:ST-LINK Utility,Keil_5; ST_Link 接口针脚定义: 按定义连接ST_Link与电路板; 打开STM32 ST-LINK Uti…

Linux内核中的页面错误处理机制与按需分页技术

在现代操作系统中,内存管理是核心功能之一,而页面错误(Page Fault)处理机制是内存管理的重要组成部分。当程序访问一个尚未映射到物理内存的虚拟地址时,CPU会触发页面错误异常,内核需要捕获并处理这种异常,以决定如何响应,例如加载缺失的页面、处理权限错误等。Linux内…

C++中vector追加vector

在C中,如果你想将一个vector追加到另一个vector的后面,可以使用std::vector的成员函数insert或者std::copy,或者简单地使用std::vector的push_back方法逐个元素添加。这里我将展示几种常用的方法: 方法1:使用insert方…

从CRUD到高级功能:EF Core在.NET Core中全面应用(四)

初识表达式树 表达式树:是一种可以描述代码结构的数据结构,它由一个节点组成,节点表示代码中的操作、方法调用或条件表达式等,它将代码中的表达式转换成一个树形结构,每个节点代表了代码中的操作例如,如果…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.24 随机宇宙:生成现实世界数据的艺术

1.24 随机宇宙:生成现实世界数据的艺术 目录 #mermaid-svg-vN1An9qZ6t4JUcGa {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-vN1An9qZ6t4JUcGa .error-icon{fill:#552222;}#mermaid-svg-vN1An9qZ6t4JUc…

MySQL为什么默认引擎是InnoDB ?

大家好,我是锋哥。今天分享关于【MySQL为什么默认引擎是InnoDB ?】面试题。希望对大家有帮助; MySQL为什么默认引擎是InnoDB ? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 MySQL 默认引擎是 InnoDB,主要…