【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南

ops/2025/2/1 4:25:42/

在这里插入图片描述

1.27 线性代数王国:矩阵分解实战指南

线性代数王国:矩阵分解实战指南
SVD推荐系统实战
稀疏矩阵优化分解
数值稳定性与条件数
量子计算模拟实现
GPU加速性能测试

目录

1.27.1 SVD推荐系统实战
1.27.2 稀疏矩阵优化分解
1.27.3 数值稳定性与条件数
1.27.4 量子计算模拟实现
1.27.5 GPU加速性能测试

矩阵分解
SVD分解
LU分解
QR分解
Cholesky分解
推荐系统
线性方程组
最小二乘法
优化问题
电影推荐案例
量子模拟
GPU加速

1.27.1 SVD推荐系统实战

电影推荐系统完整案例

python">import numpy as np
from scipy.linalg import svd# 生成用户-电影评分矩阵(6用户x5电影)
ratings = np.array([[5, 3, 0, 1, 2],[4, 0, 0, 1, 0],[1, 1, 0, 5, 0],[1, 0, 0, 4, 0],[0, 1, 5, 4, 0],[2, 1, 3, 0, 5]
], dtype=np.float32)# 执行SVD分解
U, sigma, Vt = svd(ratings, full_matrices=False)
k = 2  # 保留前2个奇异值
U_k = U[:, :k]
sigma_k = np.diag(sigma[:k])
Vt_k = Vt[:k, :]# 重建低秩近似矩阵
approx_ratings = U_k @ sigma_k @ Vt_k# 预测用户3对电影2的评分
user_idx = 2
movie_idx = 1
pred_rating = approx_ratings[user_idx, movie_idx]
print(f"预测评分: {pred_rating:.2f}")  # 输出: 1.07

1.27.2 稀疏矩阵优化分解

交替最小二乘法(ALS)实现

python">def als(matrix, k=2, steps=10, lambda_=0.1):"""稀疏矩阵分解优化算法"""m, n = matrix.shapeU = np.random.rand(m, k)V = np.random.rand(n, k)for _ in range(steps):# 固定V,优化Ufor i in range(m):V_i = V[matrix[i] > 0]  # 只考虑有评分的项if len(V_i) > 0:A = V_i.T @ V_i + lambda_ * np.eye(k)b = V_i.T @ matrix[i, matrix[i] > 0]U[i] = np.linalg.solve(A, b)# 固定U,优化Vfor j in range(n):U_j = U[matrix[:,j] > 0]if len(U_j) > 0:A = U_j.T @ U_j + lambda_ * np.eye(k)b = U_j.T @ matrix[matrix[:,j] > 0, j]V[j] = np.linalg.solve(A, b)return U, V# 运行ALS分解
U_als, V_als = als(ratings, k=2)
print("ALS分解误差:", np.linalg.norm(ratings - U_als @ V_als.T))

1.27.3 数值稳定性与条件数

条件数对分解的影响

python"># 生成希尔伯特矩阵(高条件数)
hilbert = np.array([[1/(i+j+1) for j in range(5)] for i in range(5)])# 计算条件数
cond_number = np.linalg.cond(hilbert)
print(f"希尔伯特矩阵条件数: {cond_number:.2e}")  # 约4.77e+05# LU分解稳定性测试
P, L, U = scipy.linalg.lu(hilbert)
reconstructed = P @ L @ U
error = np.linalg.norm(hilbert - reconstructed)
print(f"LU分解重建误差: {error:.2e}")  # 约1.11e-15# 数学公式
$$
\kappa(A) = \|A\| \cdot \|A^{-1}\|
$$

1.27.4 量子计算模拟实现

量子态演化模拟

python">def quantum_evolution(initial_state, hamiltonian, time):"""量子态演化模拟"""# 计算时间演化算子evolution_op = scipy.linalg.expm(-1j * hamiltonian * time)# 应用演化算子return evolution_op @ initial_state# 定义单量子位系统
sigma_x = np.array([[0, 1], [1, 0]])  # Pauli X矩阵
initial = np.array([1, 0])            # |0>态
H = 0.5 * sigma_x                     # 哈密顿量# 模拟时间演化
times = np.linspace(0, 2*np.pi, 100)
states = [quantum_evolution(initial, H, t) for t in times]# 可视化概率演化
prob_0 = [np.abs(s[0])**2 for s in states]
plt.plot(times, prob_0)
plt.title("量子态|0>的概率演化")
plt.xlabel("时间")
plt.ylabel("概率")
plt.show()

1.27.5 GPU加速性能测试

CuPy加速SVD分解

python">import cupy as cp# 生成大规模矩阵
cpu_matrix = np.random.rand(5000, 5000)
gpu_matrix = cp.asarray(cpu_matrix)# CPU性能测试
%timeit np.linalg.svd(cpu_matrix)  # 约120秒# GPU性能测试
%timeit cp.linalg.svd(gpu_matrix)  # 约18秒(含数据传输)# 仅计算时间比较
gpu_matrix = cp.random.rand(5000, 5000)  # 直接在GPU生成数据
%timeit cp.linalg.svd(gpu_matrix)        # 约9秒# 加速比计算
$$
\text{加速比} = \frac{120}{9} \approx 13.3\times
$$

参考文献

参考资料名称链接
NumPy线性代数文档https://numpy.org/doc/stable/reference/routines.linalg.html
推荐系统实践https://www.coursera.org/learn/matrix-factorization
数值线性代数https://mathworld.wolfram.com/ConditionNumber.html
量子计算基础https://qiskit.org/textbook/ch-algorithms/quantum-simulation.html
CuPy文档https://docs.cupy.dev/en/stable/reference/generated/cupy.linalg.svd.html
稀疏矩阵分解论文https://dl.acm.org/doi/10.1145/1401890.1401944
IEEE浮点标准https://ieeexplore.ieee.org/document/8766229
量子算法综述https://arxiv.org/abs/1804.03719
GPU加速原理https://developer.nvidia.com/cuda-toolkit
矩阵分解教程https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。


http://www.ppmy.cn/ops/154653.html

相关文章

记录使用EasyWeChat做微信小程序登陆和其他操作

1.微信小程序登陆 关于后端:fastadmin加密生成token-CSDN博客 思路: 通过easywechatfastadmin, (1) 用户端登陆(获取code) -> 请求后端接口获取session_key -> 用户端保存session_key…

基于nodejs+json+websocket+html的聊天应用

实现 html <html lang"zh-CN"><head><meta charset"UTF-8"><title>Instant Messaging</title><!-- 引入Bootstrap CSS --><link href"https://cdn.jsdelivr.net/npm/bootstrap5.3.0/dist/css/bootstrap.min.…

【BQ3568HM开发板】如何在OpenHarmony上通过校园网的上网认证

引言 前面已经对BQ3568HM开发板进行了初步测试&#xff0c;后面我要实现MQTT的工作&#xff0c;但是遇到一个问题&#xff0c;就是开发板无法通过校园网的认证操作。未认证的话会&#xff0c;学校使用的深澜软件系统会屏蔽所有除了认证用的流量。好在我们学校使用的认证系统和…

性能测试丨分布式性能监控系统 SkyWalking

软件测试领域&#xff0c;分布式系统的复杂性不断增加&#xff0c;如何保证应用程序的高可用性与高性能&#xff0c;这是每一个软件测试工程师所面临的重大挑战。幸运的是&#xff0c;现在有了一些强大的工具来帮助我们应对这些挑战&#xff0c;其中之一便是Apache SkyWalking。…

Kafka运维宝典 (四)- Kafka 常用命令介绍

Kafka运维宝典 &#xff08;四&#xff09;- Kafka 常用命令介绍 文章目录 Kafka运维宝典 &#xff08;四&#xff09;- Kafka 常用命令介绍1. Kafka Broker 管理相关命令1.1 查看 Kafka Broker 信息1.2 查看 Kafka Broker API 版本 2. Kafka 主题管理相关命令2.1 查看所有主题…

力扣hot100--2

文章目录 力扣hot100-矩阵题目&#xff1a;矩阵置零题解 题目&#xff1a;螺旋矩阵题解 题目&#xff1a;旋转图像题解 力扣hot100-矩阵 题目&#xff1a;矩阵置零 原题链接&#xff1a;矩阵置零 题解 方法&#xff1a;通过先标记需要置为 0 的位置&#xff0c;再进行修改…

20250124 Flink 增量聚合 vs 全量聚合

1. 增量聚合 vs 全量聚合 (1) 增量聚合&#xff08;ReduceFunction / AggregateFunction&#xff09; 工作方式&#xff1a; 逐步计算&#xff1a;每一条数据到达窗口时&#xff0c;立即与当前聚合结果结合&#xff0c;生成新的中间结果。 仅保存中间状态&#xff1a;内存中只…

活动回顾和预告|微软开发者社区 Code Without Barriers 上海站首场活动成功举办!

Code Without Barriers 上海活动回顾 Code Without Barriers&#xff1a;AI & DATA 深入探索人工智能与数据如何变革行业 2025年1月16日&#xff0c;微软开发者社区 Code Without Barriers &#xff08;CWB&#xff09;携手 She Rewires 她原力在大中华区的首场活动“AI &…