Lucene常用的字段类型lucene检索打分原理

ops/2025/1/31 8:56:16/

在 Apache Lucene 中,Field 类是文档中存储数据的基础。不同类型的 Field 用于存储不同类型的数据(如文本、数字、二进制数据等)。以下是一些常用的 Field 类型及其底层存储结构:

  1. TextField

    • 用途:用于存储文本数据,并对其进行分词和索引。
    • 底层存储结构:文本数据会被分词器(Analyzer)处理,将文本分割成词项(terms)。每个词项会被存储在倒排索引(inverted index)中,映射到包含该词项的文档。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.TextField;
      import org.apache.lucene.document.Field.Store;Document doc = new Document();
      doc.add(new TextField("fieldName", "This is a sample text.", Store.YES));

  2. StringField

    • 用途:用于存储不需要分词的字符串数据,如唯一标识符(ID)等。
    • 底层存储结构:字符串数据作为一个整体存储在倒排索引中,不会进行分词。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StringField;
      import org.apache.lucene.document.Field.Store;Document doc = new Document();
      doc.add(new StringField("fieldName", "unique_identifier", Store.YES));

  3. IntPoint、LongPoint、FloatPoint、DoublePoint

    • 用途:用于存储数值数据,并支持范围查询。
    • 底层存储结构:数值数据会被转换成字节数组,并按照分块(block)的方式存储,以支持高效的范围查询。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.IntPoint;
      import org.apache.lucene.document.StoredField;Document doc = new Document();
      int value = 123;
      doc.add(new IntPoint("fieldName", value));
      doc.add(new StoredField("fieldName", value)); // 如果需要存储原始值

  4. StoredField

    • 用途:用于存储不需要索引的数据,仅用于检索时返回的字段
    • 底层存储结构:数据以原始字节的形式存储在存储字段(stored field)中,不会被索引。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StoredField;Document doc = new Document();
      doc.add(new StoredField("fieldName", "This is the stored content."));

  5. BinaryField

    • 用途:用于存储二进制数据。
    • 底层存储结构:二进制数据以原始字节的形式存储在存储字段中,不会被索引。
    • 示例

      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.StoredField;
      import org.apache.lucene.util.BytesRef;Document doc = new Document();
      byte[] byteArray = new byte[] {1, 2, 3, 4, 5};
      doc.add(new StoredField("fieldName", new BytesRef(byteArray)));

  6. SortedDocValuesField 和 NumericDocValuesField

    • 用途:用于存储排序和打分时需要的字段值。
    • 底层存储结构:数据以紧凑的格式存储在文档值(doc values)中,支持高效的排序和打分计算。
    • 示例
      import org.apache.lucene.document.Document;
      import org.apache.lucene.document.SortedDocValuesField;
      import org.apache.lucene.document.NumericDocValuesField;
      import org.apache.lucene.util.BytesRef;Document doc = new Document();
      doc.add(new SortedDocValuesField("fieldName", new BytesRef("sortable value")));
      doc.add(new NumericDocValuesField("numericField", 12345L));
      

lucene检索打分原理

在 Apache Lucene 中,"打分"(Scoring)是指在搜索过程中,根据文档与查询的匹配程度,为每个文档分配一个相关性分数(relevance score)。这个分数反映了文档与查询的相关性,分数越高,表示文档越相关。打分用于确定搜索结果的排序,即哪些文档应该排在前面展示给用户。

打分的基本概念

  1. 相关性分数

    • 每个文档在搜索结果中都会有一个相关性分数,数值越高,表示文档越符合查询条件。
    • 相关性分数是一个浮点数,通常在 0 到 1 之间,但也可以大于 1。
  2. TF-IDF 模型

    • Lucene 使用 TF-IDF(Term Frequency-Inverse Document Frequency)模型来计算相关性分数。
    • TF(词频):在一个文档中某个词的出现频率。词频越高,表示该词对文档的重要性越大。
    • IDF(逆文档频率):某个词在所有文档中出现的频率。文档频率越低,表示该词对区分文档的重要性越大。
  3. BM25 算法

    • BM25 是 Lucene 默认的打分算法,是 TF-IDF 的进化版本,能够更好地处理长查询和长文档。
    • BM25 考虑了词频、逆文档频率、文档长度等因素。

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;public class LuceneScoringExample {public static void main(String[] args) throws Exception {// 创建分析器StandardAnalyzer analyzer = new StandardAnalyzer();// 创建索引Directory index = new RAMDirectory();IndexWriterConfig config = new IndexWriterConfig(analyzer);IndexWriter writer = new IndexWriter(index, config);// 添加文档addDoc(writer, "Lucene in Action", "193398817");addDoc(writer, "Lucene for Dummies", "55320055Z");addDoc(writer, "Managing Gigabytes", "55063554A");addDoc(writer, "The Art of Computer Science", "9900333X");writer.close();// 创建查询String querystr = "Lucene";// 解析查询Query query = new QueryParser("title", analyzer).parse(querystr);// 搜索int hitsPerPage = 10;IndexSearcher searcher = new IndexSearcher(DirectoryReader.open(index));TopDocs docs = searcher.search(query, hitsPerPage);ScoreDoc[] hits = docs.scoreDocs;// 显示结果System.out.println("Found " + hits.length + " hits.");for (int i = 0; i < hits.length; ++i) {int docId = hits[i].doc;Document d = searcher.doc(docId);System.out.println((i + 1) + ". " + d.get("isbn") + "\t" + d.get("title") + "\t" + hits[i].score);}}private static void addDoc(IndexWriter w, String title, String isbn) throws Exception {Document doc = new Document();doc.add(new TextField("title", title, Field.Store.YES));doc.add(new StringField("isbn", isbn, Field.Store.YES));w.addDocument(doc);}
}

 

在 Apache Lucene 中,打分(scoring)是一个动态计算的过程,相关性分数并不是预先存储在索引中的,而是根据查询和文档在搜索时实时计算的。因此,打分的值是临时的,不会永久存储在索引中。

  1. 动态计算

    • 当你执行一个查询时,Lucene 会根据查询条件和文档内容,动态计算每个匹配文档的相关性分数。
    • 这个计算过程基于查询的类型、词频(TF)、逆文档频率(IDF)、文档长度等因素。
  2. 不存储在索引中

    • 相关性分数并不会被存储在索引中。存储在索引中的信息包括倒排索引、词项频率、文档值等。
    • 每次执行查询时,Lucene 都会重新计算相关性分数,这确保了分数总是根据最新的查询条件和文档内容而更新。

http://www.ppmy.cn/ops/154435.html

相关文章

springboot 简化 spring开发

什么是自动配置&#xff1f; 简单概念&#xff1a; Spring Boot 自动配置是一种 “约定优于配置” 的做法。根据项目类路径&#xff08;classpath&#xff09;上存在的依赖、配置文件中的某些属性&#xff0c;Spring Boot 会自动为常见场景创建并配置相关 Bean&#xff0c;省…

solidity基础 -- 可视范围

在 Solidity 编程语言中&#xff0c;可视范围&#xff08;Visibility&#xff09;用于控制合约中变量和函数的访问权限。这对于确保合约的安全性、模块化以及代码的可维护性至关重要。Solidity 提供了四种可视范围修饰符&#xff1a;public、private、external 和 internal。以…

Windows 靶机常见服务、端口及枚举工具与方法全解析:SMB、LDAP、NFS、RDP、WinRM、DNS

在渗透测试中&#xff0c;Windows 靶机通常会运行多种服务&#xff0c;每种服务都有其默认端口和常见的枚举工具及方法。以下是 Windows 靶机常见的服务、端口、枚举工具和方法的详细说明&#xff1a; 1. SMB&#xff08;Server Message Block&#xff09; 端口 445/TCP&…

独立成分分析 (ICA):用于信号分离或降维

独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法&#xff0c;常用于盲源分离 (Blind Source Separation, BSS) 问题&#xff0c;例如音频信号分离或脑电信号 (EEG) 处理。 实现 ICA&#xff08;独立成分分析&#xff09; 步骤 生成…

C# 中 [MethodImpl(MethodImplOptions.Synchronized)] 的使用详解

总目录 前言 在C#中&#xff0c;[MethodImpl(MethodImplOptions.Synchronized)] 是一个特性&#xff08;attribute&#xff09;&#xff0c;用于标记方法&#xff0c;使其在执行时自动获得锁。这类似于Java中的 synchronized 关键字&#xff0c;确保同一时刻只有一个线程可以执…

Vue.js组件开发-实现全屏背景图片滑动切换特效

使用 Vue 实现全屏背景图片滑动切换特效的详细步骤、代码、注释和使用说明。 步骤 创建 Vue 项目&#xff1a;使用 Vue CLI 创建一个新的 Vue 项目。准备图片资源&#xff1a;准备好要用于背景切换的图片&#xff0c;并将它们放在项目的合适目录下。编写 HTML 结构&#xff1…

Leetcode:219

1&#xff0c;题目 2&#xff0c;思路 第一种就是简单的暴力比对当时过年没细想 第二种&#xff1a; 用Map的特性key唯一&#xff0c;把数组的值作为Map的key值我们每加载一个元素都会去判断这个元素在Map里面存在与否如果存在进行第二个判断条件abs(i-j)<k,条件 符合直接…

【Linux】线程互斥与同步

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…