Spark SQL中的from_json函数详解

ops/2025/1/24 2:20:15/

json_0">Spark SQL中的from_json函数详解

在Spark SQL中,from_json是一个用于解析JSON数据的函数,主要用于将JSON格式的字符串解析为结构化的数据(即StructType或其他Spark SQL数据类型)。这个函数在处理半结构化数据(如JSON日志、嵌套结构数据)时非常有用。

1. 基本用法

from_json的主要作用是将JSON字符串解析为指定的Spark SQL数据类型(如StructType、ArrayType等)。通常与schema(模式定义)结合使用,明确解析后数据的结构。

语法

sql">from_json(json_string, schema [, options])
  • json_string:要解析的JSON字符串。
  • schema:定义JSON数据结构的模式,可以是StructType、ArrayType等。
  • options(可选):用于指定解析选项(如是否允许解析失败、空值处理等)。

2. 数据结构内容(Schema 定义)

from_json函数需要明确的模式定义(schema),以便将JSON字符串解析为结构化数据。模式可以是以下几种Spark SQL数据类型:

2.1 基本数据类型

  • StringType:字符串
  • IntegerType:整数
  • LongType:长整型
  • DoubleType:双精度浮点型
  • BooleanType:布尔值
  • TimestampType:时间戳
  • DateType:日期

2.2 复杂数据类型

  • StructType:结构体,类似于JSON对象。
  • ArrayType:数组,类似于JSON数组。
  • MapType:键值对,类似于JSON中的键值结构。

3. 使用示例

3.1 示例解析简单JSON

JSON数据:

json">{"name": "Alice", "age": 25}

SQL实现:

sql">CREATE OR REPLACE TEMP VIEW json_table AS 
SELECT '{"name": "Alice", "age": 25}' AS json_string;SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>') AS parsed
FROM json_table;

输出结果:

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+

3.2 示例:解析嵌套JSON

JSON数据:

json">{"name": "Alice","info": {"age": 25,"city": "New York"}
}

SQL实现:

sql">CREATE OR REPLACE TEMP VIEW json_table AS 
SELECT '{"name": "Alice", "info": {"age": 25, "city": "New York"}}' AS json_string;SELECT from_json(json_string, 'STRUCT<name: STRING, info: STRUCT<age: INT, city: STRING>>') AS parsed
FROM json_table;

输出结果:

+-------------------------+
|parsed                  |
+-------------------------+
|{Alice, {25, New York}} |
+-------------------------+

3.3 示例:解析JSON数组

JSON数据:

json">[{"name": "Alice", "age": 25},{"name": "Bob", "age": 30}
]

SQL实现:

sql">CREATE OR REPLACE TEMP VIEW json_table AS 
SELECT '[{"name": "Alice", "age": 25}, {"name": "Bob", "age": 30}]' AS json_string;SELECT from_json(json_string, 'ARRAY<STRUCT<name: STRING, age: INT>>') AS parsed
FROM json_table;

输出结果:

+--------------------------+
|parsed                   |
+--------------------------+
|[{Alice, 25}, {Bob, 30}] |
+--------------------------+

3.4 示例:解析并提取嵌套字段

JSON数据:

json">{"name": "Alice","info": {"age": 25,"city": "New York"}
}

SQL实现:

sql">CREATE OR REPLACE TEMP VIEW json_table AS 
SELECT '{"name": "Alice", "info": {"age": 25, "city": "New York"}}' AS json_string;SELECT parsed.name AS name,parsed.info.age AS age,parsed.info.city AS city
FROM (SELECT from_json(json_string, 'STRUCT<name: STRING, info: STRUCT<age: INT, city: STRING>>') AS parsedFROM json_table
);

输出结果:

+-------+---+----------+
|name   |age|city      |
+-------+---+----------+
|Alice  |25 |New York  |
+-------+---+----------+

4. 常见选项(Options)

以下是from_json中支持的常见options参数,以及它们的详细说明和使用案例。

4.1 常见 Options 参数

  • mode:控制解析模式:PERMISSIVEDROPMALFORMEDFAILFAST,默认值:PERMISSIVE。
  • columnNameOfCorruptRecord:如果解析失败,存储错误记录的列名,默认值:空值(无默认值)。
  • timestampFormat:指定时间戳格式,默认值:yyyy-MM-dd’T’HH:mm:ss.SSSXXX。
  • dateFormat:指定日期格式,默认值:yyyy-MM-dd。
  • multiLine:是否允许JSON跨行(即多行JSON),默认值:false。
  • allowUnquotedFieldNames:是否允许字段名不使用引号,默认值:false。
  • allowSingleQuotes:是否允许字段名和字符串值使用单引号,默认值:true。
  • allowNumericLeadingZeros:是否允许数字前置零,默认值:false。
  • allowBackslashEscapingAnyCharacter:是否允许反斜杠转义任意字符,默认值:false。
  • allowComments:是否允许JSON中存在注释(如///* */),默认值:false。

4.2 Options 参数详细解析与案例

4.2.1 mode

mode用于控制解析模式,支持以下三种模式:

  • PERMISSIVE(默认):尝试解析尽可能多的数据。如果某些JSON数据解析失败,Spark会将失败的记录存储在_corrupt_record列中。
  • DROPMALFORMED:丢弃所有解析失败的记录。
  • FAILFAST:如果发现解析错误,则直接抛出异常,停止执行。

案例:mode参数

JSON数据:

json">{"name": "Alice", "age": 25}
{"name": "Bob", "age": "invalid"}
{"name": "Charlie"}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('mode', 'PERMISSIVE')) AS parsed
FROM json_table;

输出(PERMISSIVE模式,失败的记录存储在_corrupt_record):

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
|null            |
|null            |
+----------------+

如果使用DROPMALFORMED

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('mode', 'DROPMALFORMED')) AS parsed
FROM json_table;

输出(解析失败的记录被丢弃):

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+

如果使用FAILFAST

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('mode', 'FAILFAST')) AS parsed
FROM json_table;

输出:Spark会抛出解析失败的异常。

4.2.2 columnNameOfCorruptRecord

指定存储解析失败记录的列名。如果设置了该选项,解析失败的JSON会存储在指定的列中,而不是默认的_corrupt_record列。

案例:columnNameOfCorruptRecord

JSON数据:

json">{"name": "Alice", "age": 25}
{"name": "Bob", "age": "invalid"}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('columnNameOfCorruptRecord', 'error_record')) AS parsed
FROM json_table;

输出:

+----------------+-------------------+
|parsed          |error_record       |
+----------------+-------------------+
|{Alice, 25}     |null               |
|null            |{"name": "Bob",...}|
+----------------+-------------------+
4.2.3 timestampFormat 和 dateFormat

用于指定时间戳和日期字段的解析格式。

案例:timestampFormat 和 dateFormat

JSON数据:

json">{"name": "Alice", "timestamp": "2023-01-01T12:00:00", "birth_date": "1990-01-01"}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, timestamp: TIMESTAMP, birth_date: DATE>', map('timestampFormat', 'yyyy-MM-dd\'T\'HH:mm:ss', 'dateFormat', 'yyyy-MM-dd')) AS parsed
FROM json_table;

输出:

+-------------------------------+
|parsed                        |
+-------------------------------+
|{Alice, 2023-01-01 12:00:00, 1990-01-01}|
+-------------------------------+
4.2.4 multiLine

指定是否允许JSON数据跨多行。默认值为false。

案例:multiLine

JSON数据:

json">{"name": "Alice","age": 25
}

SQL查询(multiLine=false,无法解析多行JSON):

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('multiLine', 'false')) AS parsed
FROM json_table;

输出:

+----------------+
|parsed          |
+----------------+
|null            |
+----------------+

SQL查询(multiLine=true,支持多行JSON):

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('multiLine', 'true')) AS parsed
FROM json_table;

输出:

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+
4.2.5 allowUnquotedFieldNames

允许JSON中的字段名不加引号。

案例:allowUnquotedFieldNames

JSON数据:

json">{name: "Alice", age: 25}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('allowUnquotedFieldNames', 'true')) AS parsed
FROM json_table;

输出:

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+
4.2.6 allowSingleQuotes

允许JSON中的字段名和字符串值使用单引号。

案例:allowSingleQuotes

JSON数据:

json">{'name': 'Alice', 'age': 25}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('allowSingleQuotes', 'true')) AS parsed
FROM json_table;

输出:

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+
4.2.7 allowComments

允许JSON数据中包含注释(如///* */)。

案例:allowComments

JSON数据:

json">{"name": "Alice", // This is a comment"age": 25
}

SQL查询:

sql">SELECT from_json(json_string, 'STRUCT<name: STRING, age: INT>', map('allowComments', 'true')) AS parsed
FROM json_table;

输出:

+----------------+
|parsed          |
+----------------+
|{Alice, 25}     |
+----------------+

4.3 Options参数总结

from_json的options参数提供了灵活的JSON解析配置,适用于各种复杂或非标准的JSON数据场景。以下是常用场景的总结:

  • 容错性控制:使用modecolumnNameOfCorruptRecord
  • 时间和日期解析:使用timestampFormatdateFormat
  • 非标准JSON支持:使用multiLineallowUnquotedFieldNamesallowSingleQuotesallowComments等。

json_480">5. from_json总结

from_json是Spark SQL中处理JSON数据的核心工具,它的核心是通过指定的schema将JSON字符串解析为结构化数据。通过灵活定义StructType、ArrayType等模式,可以处理简单到复杂的JSON数据结构。如果你有具体的JSON数据或使用场景,可以提供详细信息,我可以进一步帮助你解析和定义适合的schema!
from_json处理完后,我们对拿到的结果可能还要关联的内容spark sql 对struct、array、map类型的函数操作,这样能更加方便对字符串的解析。



http://www.ppmy.cn/ops/152624.html

相关文章

wsl 使用 docker

直接在 wsl 安装 docker , 有可能会失败&#xff0c;可以通过在 windows 安装 Docker Desktop&#xff0c;然后连接 wsl 进行解决 注意&#xff1a; 1. 需要先安装 wsl 2. 使用时要先启动 docker Desktop, 才能在 wsl 中使用 下载&#xff1a; Docker: Accelerated Containe…

海康威视摄像头RTSP使用nginx推流到服务器直播教程

思路&#xff1a; 之前2020年在本科的时候&#xff0c;由于项目的需求需要将海康威视的摄像头使用推流服务器到网页进行直播。这里将自己半个月琢磨出来的步骤给大家发一些。切勿转载&#xff01;&#xff01;&#xff01;&#xff01; 使用网络摄像头中的rtsp协议---------通…

CentOS 7.9下安装Docker

一、安装docker前的准备工作 操作系统版本为centos 7.9&#xff0c;内核版本需要在3.10以上&#xff0c;需要保障能够连通互联网&#xff0c;为了避免安装过程中出现网络异常建议关闭linux的防火墙&#xff08;生产环境下不要关闭防火墙&#xff0c;可根据实际情况设置防火墙出…

路由器旁挂三层网络实现SDWAN互联(爱快SD-WAN)

近期因公司新办公区建设&#xff0c;原有的爱快路由器的SDWAN功能实现分支之间互联的服务还需要继续使用。在原有的小型网络中&#xff0c;使用的爱快路由器当作网关设备&#xff0c;所以使用较为简单,如下图所示。 现变更网络拓扑为三层网络架构&#xff0c;但原有的SDWAN分支…

LabVIEW 蔬菜精密播种监测系统

在当前蔬菜播种工作中&#xff0c;存在着诸多问题。一方面&#xff0c;播种精度难以达到现代农业的高标准要求&#xff0c;导致种子分布不均&#xff0c;影响作物的生长发育和最终产量&#xff1b;另一方面&#xff0c;对于小粒径种子&#xff0c;传统的监测手段难以实现有效监…

Logo语言的测试开发

Logo语言的测试开发 引言 Logo语言是一种面向儿童和初学者的编程语言&#xff0c;由于其简单易懂的语法和图形化编程的特点&#xff0c;深受教育工作者和学生的喜爱。Logo不仅是一种编程语言&#xff0c;还是一种学习工具&#xff0c;能够帮助学生在创造性和逻辑思维方面的发…

华为数据中心CE系列交换机级联M-LAG配置示例

M-LAG组网简介 M-LAG&#xff08;Multi-chassis Link Aggregation&#xff09;技术是一种跨设备的链路聚合技术&#xff0c;它通过将两台交换机组成一个逻辑设备&#xff0c;实现链路的负载分担和故障切换&#xff0c;从而提高网络的可靠性和稳定性。下面给大家详细介绍如何在…

vim文本编辑器

vim命令的使用&#xff1a; [rootxxx ~]# touch aa.txt #首先创建一个文件 [rootxxx ~]# vim aa.txt #vim进入文件aa.txt进行编辑 vim配置文件&#xff1a;/etc/vimrc vim是vi的升级版&#xff0c;具有以下三种基本模式&#xff1a; 输入模式(编辑模式) …