【深度学习基础】多层感知机 | 多层感知机的实现

ops/2025/1/23 16:08:32/

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、多层感知机的从零开始实现
      • (一)初始化模型参数
      • (二)激活函数
      • (三)模型
      • (四)损失函数
      • (五)训练
    • 二、多层感知机的简洁实现
      • 模型
    • 小结


一、多层感知机的从零开始实现

  我们已经在【深度学习基础】多层感知机 | 多层感知机概述 中描述了多层感知机(MLP),现在让我们尝试自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。

import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

(一)初始化模型参数

  回想一下,Fashion-MNIST中的每个图像由 28 × 28 = 784 28 \times 28 = 784 28×28=784个灰度像素值组成。所有图像共分为10个类别。忽略像素之间的空间结构,我们可以将每个图像视为具有784个输入特征和10个类的简单分类数据集。首先,我们将实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元。注意,我们可以将这两个变量都视为超参数。通常,我们选择2的若干次幂作为层的宽度。因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。

  我们用几个张量来表示我们的参数。注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。跟以前一样,我们要为损失关于这些参数的梯度分配内存。

num_inputs, num_outputs, num_hiddens = 784, 10, 256W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))params = [W1, b1, W2, b2]

(二)激活函数

  为了确保我们对模型的细节了如指掌,我们将实现ReLU激活函数,而不是直接调用内置的relu函数。

def relu(X):a = torch.zeros_like(X)return torch.max(X, a)

(三)模型

  因为我们忽略了空间结构,所以我们使用reshape将每个二维图像转换为一个长度为num_inputs的向量。只需几行代码就可以实现我们的模型。

def net(X):X = X.reshape((-1, num_inputs))H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法return (H@W2 + b2)

(四)损失函数

  由于我们已经从零实现过softmax函数,因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。回想一下我们之前在softmax回归的简洁实现中对这些复杂问题的讨论。我们鼓励感兴趣的读者查看损失函数的源代码,以加深对实现细节的了解。

loss = nn.CrossEntropyLoss(reduction='none')

(五)训练

  幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。可以直接调用d2l包的train_ch3函数(参见【深度学习基础】线性神经网络 | softmax回归的从零开始实现),将迭代周期数设置为10,并将学习率设置为0.1。

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

在这里插入图片描述

  为了对学习到的模型进行评估,我们将在一些测试数据上应用这个模型。

d2l.predict_ch3(net, test_iter)

在这里插入图片描述

二、多层感知机的简洁实现

  本节将介绍通过高级API更简洁地实现多层感知机

import torch
from torch import nn
from d2l import torch as d2l

模型

  与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。第二层是输出层。

net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights);

  训练过程的实现与我们实现softmax回归时完全相同,这种模块化设计使我们能够将与模型架构有关的内容独立出来。

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

小结

  • 手动实现一个简单的多层感知机是很容易的。然而如果有大量的层,从零开始实现多层感知机会变得很麻烦(例如,要命名和记录模型的参数)。
  • 我们可以使用高级API更简洁地实现多层感知机
  • 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。

http://www.ppmy.cn/ops/152502.html

相关文章

【C++提高篇】—— C++泛型编程之模板基本语法和使用的详解

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、模板的概念二、函数模板2.1 函数模板的使用2.2 函数模板注意事项2.3 普通函数与函数模板的区别2.4 普通函数与函数模板的调用规则2.5 模板的局限性 三、类模…

H3C-防火墙IPSec配置案例(主模式)

目录 1.IPSec简述:2.IPSec应用场景:3.网络拓扑及说明:4.案例背景:5.网络配置:5.1 基础网络配置:5.1.1 总部防火墙基础配置:5.1.2 分部防火墙基础配置:5.1.3 互联网路由器基础配置:5.1.4 总部服务器基础配置:5.1.5 总部PC基础配置: 5.2 IPSec配置:5.2.1 总部防火墙IPSec配置:5.2…

MySQL用户授权、收回权限与查看权限

【图书推荐】《MySQL 9从入门到性能优化(视频教学版)》-CSDN博客 《MySQL 9从入门到性能优化(视频教学版)(数据库技术丛书)》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) MySQL9数据库技术_夏天又到了…

gitlabgit分支合并

在GitLab中,分支合并是一个非常常见的操作,可以将一个分支的改动合并到另一个分支中。下面我将为你介绍一下GitLab中分支合并的具体步骤。 首先,进入你的项目仓库页面,在页面上方的导航栏中点击”Repository”,然后选择…

2025年——【寒假】自学黑客计划(网络安全)

CSDN大礼包:👉基于入门网络安全/黑客打造的:👉黑客&网络安全入门&进阶学习资源包 前言 什么是网络安全 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&…

三篇物联网漏洞挖掘综述

由于物联网设备存在硬件资源受限、硬件复杂异构, 代码、文档未公开的问题, 物联网设备的漏洞挖掘存在较大的挑战: 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性,…

力扣动态规划-7【算法学习day.101】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?建议灵神的题单和代码随想录)和记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关…

ChatGPT Prompt 编写指南

一、第一原则:明确的意图​ 你需要明确地表达你的意图和要求,尽可能具体、描述性、详细地描述所需的上下文、你期望的结果等。你的要求越明确,越有希望获得你想要的答案。​ 糟糕的案例 ❌​ ​ 写一首关于 OpenAI 的诗。​ ​ 更好的案…