cuda从零开始手搓PB神经网络

ops/2025/1/21 14:21:29/

cuda实现PB神经网络


基于上一篇的矩阵点乘,实现了矩阵的加减乘除、函数调用等。并且复用之前元编程里面写的梯度下降、Adam、NAdam优化方法。实现PB神经网络如下:

#ifndef __BP_NETWORK_HPP__
#define __BP_NETWORK_HPP__
#include "matrix.hpp"
#include "mat.hpp"
#include "update_methods.hpp"template<typename activate_type, typename val_type_, template<typename> class update_type_tpl, typename init_type, int input_num_, int output_num_, int ... remain_layer>
struct bp_network
{constexpr static int input_num = input_num_;constexpr static int output_num = output_num_;using val_type = val_type_;using input_type = mat<input_num, 1, val_type>;using input_t_type = mat<1, input_num, val_type>;using output_type = mat<output_num, 1, val_type>;using weight_type = mat<output_num, input_num, val_type>;using forward_func = typename func_pair<activate_type>::forward_func;using backward_func = typename func_pair<activate_type>::backward_func;using next_node_type = typename bp_network<activate_type, val_type, update_type_tpl, init_type, output_num, remain_layer...>;using term_output_type = typename next_node_type::term_output_type;weight_type weight;update_type_tpl<weight_type> weight_update_method;output_type bias;update_type_tpl<output_type> bias_update_method;input_type pre_input;output_type pre_func_input;next_node_type next_node;bp_network():weight_update_method(), bias_update_method(){weight.template reset<init_type>();bias.template reset<init_type>();next_node = bp_network<activate_type, val_type, update_type_tpl, init_type, output_num, remain_layer...>();}auto forward(input_type& input){output_type curr_output;pre_input = input;auto temp = weight.dot(input);pre_func_input = temp + bias;curr_output = pre_func_input.template activate<forward_func>();return next_node.forward(curr_output);}auto backward(term_output_type& delta, val_type lr){output_type curr_delta = next_node.backward(delta, lr);curr_delta = pre_func_input.template activate<backward_func>() * curr_delta;auto ret = weight.t_dot(curr_delta);// 更新参数weight_type delta_weight = curr_delta.dot(pre_input.t());weight = weight_update_method.update(weight, delta_weight);bias = bias_update_method.update(bias, curr_delta);return ret;}   // 更新惯性量void update_inert(){weight_update_method.update_inert();bias_update_method.update_inert();next_node.update_inert();}void print(){weight.print();printf("-----------------\n");bias.print();printf("=================\n");next_node.print();}
};template<typename activate_type, typename val_type_, template<typename> class update_type_tpl, typename init_type, int input_num_, int output_num_>
struct bp_network<activate_type, val_type_, update_type_tpl, init_type, input_num_, output_num_>
{constexpr static int input_num = input_num_;constexpr static int output_num = output_num_;using val_type = val_type_;using input_type = mat<input_num, 1, val_type>;using input_t_type = mat<1, input_num, val_type>;using output_type = mat<output_num, 1, val_type>;using weight_type = mat<output_num, input_num, val_type>;using forward_func = typename func_pair<activate_type>::forward_func;using backward_func = typename func_pair<activate_type>::backward_func;using term_output_type = typename output_type;using weight_update_type = typename update_type_tpl<weight_type>;using bias_update_type = typename update_type_tpl<output_type>;weight_type weight;weight_update_type weight_update;output_type bias;bias_update_type bias_update;output_type pre_func_input;input_type pre_input;bp_network():weight_update(), bias_update(){weight.template reset<init_type>();bias.template reset<init_type>();}auto forward(input_type& input){pre_input = input;auto temp = weight.dot(input);pre_func_input = temp + bias;return pre_func_input.template activate<forward_func>();}auto backward(output_type& delta, val_type lr){output_type curr_delta = pre_func_input.template activate<backward_func>() * delta;auto ret = weight.t_dot(curr_delta);// 更新参数weight_type delta_weight = curr_delta.dot(pre_input.t());weight = weight_update.update(weight, delta_weight);bias = bias_update.update(bias, curr_delta);return ret;}void update_inert(){weight_update.update_inert();bias_update.update_inert();}void print(){weight.print();printf("-----------------\n");bias.print();printf("*****************\n");}
};#endif

下面实验一下我们的bp神经网络

#include <chrono>
#include <thread>
#include "matrix.hpp"
#include "bp_network.hpp"
int main()
{constexpr int row_num = 32;constexpr int adj_num = 32;constexpr int col_num = 32;/*matrix_device_proxy<row_num, adj_num, double> A;eyes(A(), 2.0);matrix_device_proxy<adj_num, col_num, double> B;eyes(B(), 1.0);matrix_device_proxy<row_num, col_num, double> C;mat_dot<sigmoid>(A(), B(), C());print(type_cast(C()));auto A = mat<row_num, adj_num, double>::eyes(2.0);auto B = mat<adj_num, col_num, double>::eyes(1.0);auto C = A.dot(B);C = C + 1.0;C = sqrtl(C);C = C - 2.0;C = C * 3.0;C = C / 4.0;C.print();std::cout << "---------- D ----------" << std::endl;auto D = mat<row_num, col_num, double>::xavier_gaussian();D.print();std::cout << "---------- E ----------" << std::endl;auto E = mat<row_num, col_num, double>::xavier_mean();E.print();std::cout << "---------- F ----------" << std::endl;auto F = mat<row_num, col_num, double>::he_gaussian();F.print();std::cout << "---------- G ----------" << std::endl;auto G = mat<row_num, col_num, double>::he_mean();G.print();*/bp_network<sigmoid, double, nadam, xavier_gaussian_type, row_num, adj_num, col_num> node;auto input = mat<row_num, 1, double>::ones(0.2);auto expect = mat<col_num, 1, double>::ones(0.4);int times = 8000;int update_inert_times = 100;int step = times / update_inert_times;// 计时开始auto start = std::chrono::high_resolution_clock::now();for (int i = 0; i < times; ++i){auto output = node.forward(input);auto delta = (output - expect);node.backward(delta, 0.001);if (i == times - 1){output.t().print();}if (i % step == 0 && i != 0){node.update_inert();}}// 计时结束// 获取结束时间点auto end = std::chrono::high_resolution_clock::now();// 计算持续时间std::chrono::duration<double> duration = end - start;// 输出执行时间std::cout << "Execution time: " << duration.count() << " seconds" << std::endl;//node.print();cudaDeviceReset();return 0;
}

以上代码有个学习率lr没有地方设置哈,将来优化,见谅。执行结果如下:
在这里插入图片描述
可以看出,经过8000次的训练,这个使用sigmoid激活函数、NAdam优化、Xavier-Gaussian初始化的323232的PB能够将误差缩减到0.0001这个量级,而训练时间仅为8.54秒。还是相当给力的。
虽然这对于我的工作没有任何关系,但是我还是想搞一下。毕竟“越是没用的知识就越有用,越是有用的东西就越没用”。


http://www.ppmy.cn/ops/151929.html

相关文章

C++实现设计模式---解释器模式 (Interpreter Pattern)

解释器模式 (Interpreter Pattern) 解释器模式 是一种行为型设计模式&#xff0c;它提供了一个语言的语法表示&#xff0c;并定义了一个解释器来处理这个语言的语法。通过解释器模式&#xff0c;可以实现对特定语法或表达式的解析和执行。 意图 定义一种语言的文法&#xff0…

废品回收小程序,数字化回收时代

随着科技的不断创新发展&#xff0c;废品回收在各种技术的支持下也在不断地创新&#xff0c;提高了市场的发展速度&#xff0c;不仅能够让回收效率更加高效&#xff0c;还能够让居民更加便捷地进行回收&#xff0c;推动废品回收行业的发展。 回收市场机遇 目前&#xff0c;废…

WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测

WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测 目录 WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于WOA-CNN-GRU-Attention、…

LLM大语言模型的分类

从架构和功能的角度来看&#xff0c;LLM&#xff08;Large Language Model&#xff0c;大语言模型&#xff09;主要可以分为以下几种类型&#xff1a; **1. 基础语言模型&#xff1a;** * **定义:** 通过在大规模文本数据上进行预训练&#xff0c;学习语言的规律和模式&#…

基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台

系统说明 基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台&#xff0c; 同时支持微服务架构和单体架构提供对 Spring Authorization Server 生产级实践&#xff0c;支持多种安全授权模式提供对常见容器化方案支持 Kubernetes、Rancher2 、Kubesphere、EDA…

qml OpacityMask详解

1、概述 OpacityMask是QML&#xff08;Qt Meta-Object Language&#xff09;中的一种图形效果&#xff0c;它使用另一个项目&#xff08;通常是一个图像或图形项&#xff09;作为遮罩来控制源项目的透明度。这种效果允许开发者通过遮罩的alpha通道来精确地控制源项目中哪些部分…

EXTI外部中断

68个中断源&#xff0c;这个是F1系列最多的中断数量&#xff0c;对于一个具体的型号&#xff0c;可能没有这么多中断&#xff0c;所以这个数量看看就行&#xff0c;具体以对应型号的数据手册为准。接着STM32的中断包含EXTI外部中断&#xff0c;TIM定时器&#xff0c;ADC模数转换…

Golang学习笔记_27——单例模式

Golang学习笔记_24——泛型 Golang学习笔记_25——协程Golang学习笔记_25——协程 Golang学习笔记_26——通道 文章目录 单例模式1. 介绍2. 应用场景3. 实现3.1 饿汉式3.2 懒汉模式 源码 单例模式 1. 介绍 单例模式是一种创建型设计模式&#xff0c;它确保一个类只有一个实例…