伏羲1.0试用版(文生图)

ops/2025/1/21 2:59:14/

涵盖了从配置文件加载、数据加载、数据清洗、文本预处理、数据增强、风格迁移、特征提取、颜色抖动、文本编码器、图像生成器、视频生成器、音频生成器、判别器、模型定义、模型加载、图像保存、视频保存、音频保存、数据集类、模型训练、图像生成、图形用户界面、输出项目目录及所有文件、数据加密、模型解释性、可视化注意力机制、自动化测试等多个方面的内容。确保了模型的训练、生成、保存、使用的完整性和功能性。

python">import os
import yaml
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np
import logging
from tqdm import tqdm
from tensorboardX import SummaryWriter
import threading
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
from cryptography.fernet import Fernet
import unittest
import matplotlib.pyplot as plt
import torchvision.models as models
import torch.nn.functional as F
from torch.cuda.amp import GradScaler, autocast# 配置文件加载
def load_config(config_path):"""从配置文件中加载配置参数。:param config_path: 配置文件的路径:return: 配置参数字典"""try:with open(config_path, 'r', encoding='utf-8') as file:config = yaml.safe_load(file)return configexcept FileNotFoundError:logging.error(f"配置文件 {config_path} 未找到")raiseexcept yaml.YAMLError as e:logging.error(f"配置文件解析错误: {e}")raise# 数据加载
def load_text_data(file_path):"""从文本文件中加载数据。:param file_path: 文本文件的路径:return: 文本数据列表"""try:with open(file_path, 'r', encoding='utf-8') as file:text_data = file.readlines()return [line.strip() for line in text_data]except FileNotFoundError:logging.error(f"文本文件 {file_path} 未找到")raiseexcept IOError as e:logging.error(f"读取文本文件时发生错误: {e}")raise# 数据清洗
def clean_data(data):"""清洗数据,去除空值和重复值。:param data: DataFrame 数据:return: 清洗后的 DataFrame 数据"""return data.dropna().drop_duplicates()# 文本预处理
def preprocess_text(text, tokenizer):"""对文本进行预处理,转换为模型输入格式。:param text: 输入文本:param tokenizer: 分词器:return: 预处理后的文本张量"""return tokenizer(text, return_tensors='pt', padding=True, truncation=True)# 数据增强
def augment_data(image, mode, style_image=None):"""对图像进行数据增强。:param image: 输入图像:param mode: 增强模式('train' 或 'test'):param style_image: 风格图像:return: 增强后的图像"""if mode == 'train':transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomRotation(10),transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])else:transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])image = transform(image)if style_image is not None:image = style_transfer(image, style_image)return image# 风格迁移
def style_transfer(image, style_image):"""风格迁移。:param image: 输入图像:param style_image: 风格图像:return: 迁移后的图像"""vgg = models.vgg19(pretrained=True).featuresvgg = vgg.to(device)vgg.eval()content_weight = 1style_weight = 1e6content_features = extract_features(image, vgg)style_features = extract_features(style_image, vgg)style_grams = {layer: gram_matrix(style_features[layer]) for layer in style_features}target = image.clone().requires_grad_(True).to(device)optimizer = optim.LBFGS([target])run = [0]while run[0] <= 300:def closure():optimizer.zero_grad()target_features = extract_features(target, vgg)content_loss = F.mse_loss(target_features['conv_4'], content_features['conv_4']) * content_weightstyle_loss = 0for layer in style_grams:target_feature = target_features[layer]target_gram = gram_matrix(target_feature)style_gram = style_grams[layer]layer_style_loss = F.mse_loss(target_gram, style_gram) * style_weightstyle_loss += layer_style_losstotal_loss = content_loss + style_losstotal_loss.backward()run[0] += 1return total_lossoptimizer.step(closure)return target.cpu().detach()# 提取特征
def extract_features(image, model, layers=None):"""提取图像的特征。:param image: 输入图像:param model: 特征提取模型:param layers: 需要提取的层:return: 特征字典"""if layers is None:layers = {'0': 'conv_1','5': 'conv_2','10': 'conv_3','19': 'conv_4','28': 'conv_5'}features = {}x = imagefor name, layer in model._modules.items():x = layer(x)if name in layers:features[layers[name]] = xreturn features# 计算Gram矩阵
def gram_matrix(tensor):"""计算Gram矩阵。:param tensor: 输入张量:return: Gram矩阵"""b, d, h, w = tensor.size()tensor = tensor.view(b * d, h * w)gram = torch.mm(tensor, tensor.t())return gram.div(b * d * h * w)# 颜色抖动
def color_jitter(image):"""颜色抖动。:param image: 输入图像:return: 颜色抖动后的图像"""return transforms.functional.adjust_brightness(transforms.functional.adjust_contrast(transforms.functional.adjust_saturation(image, 1.2), 1.2), 1.2)# 文本编码器
class TextEncoder(nn.Module):"""文本编码器,使用预训练的BERT模型。"""def __init__(self, model_name):super(TextEncoder, self).__init__()self.tokenizer = AutoTokenizer.from_pretrained(model_name)self.model = AutoModel.from_pretrained(model_name)def forward(self, text):"""前向传播,将文本编码为特征向量。:param text: 输入文本:return: 编码后的特征向量"""inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)outputs = self.model(**inputs)return outputs.last_hidden_state.mean(dim=1)# 图像生成器
class ImageGenerator(nn.Module):"""图像生成器,使用卷积转置层生成图像。"""def __init__(self, in_channels):super(ImageGenerator, self).__init__()self.decoder = nn.Sequential(nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),nn.BatchNorm2d(512),nn.ReLU(True),nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.ReLU(True),nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.ReLU(True),nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(64),nn.ReLU(True),nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),nn.Tanh())def forward(self, x):"""前向传播,生成图像。:param x: 输入特征向量:return: 生成的图像"""x = x.view(-1, x.size(1), 1, 1)return self.decoder(x)# 视频生成器
class VideoGenerator(nn.Module):def __init__(self, in_channels):super(VideoGenerator, self).__init__()self.decoder = nn.Sequential(nn.ConvTranspose3d(in_channels, 512, kernel_size=(4, 4, 4), stride=(1, 1, 1), padding=(0, 0, 0)),nn.BatchNorm3d(512),nn.ReLU(True),nn.ConvTranspose3d(512, 256, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),nn.BatchNorm3d(256),nn.ReLU(True),nn.ConvTranspose3d(256, 128, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),nn.BatchNorm3d(128),nn.ReLU(True),nn.ConvTranspose3d(128, 64, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),nn.BatchNorm3d(64),nn.ReLU(True),nn.ConvTranspose3d(64, 3, kernel_size=(4, 4, 4), stride=(2, 2, 2), padding=(1, 1, 1)),nn.Tanh())def forward(self, x):x = x.view(-1, x.size(1), 1, 1, 1)return self.decoder(x)# 音频生成器
class AudioGenerator(nn.Module):def __init__(self, model_name):super(AudioGenerator, self).__init__()self.model = Tacotron2.from_pretrained(model_name)def forward(self, text):return self.model(text)# 判别器
class Discriminator(nn.Module):"""判别器,用于判别生成的图像是真实的还是伪造的。"""def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),nn.Sigmoid())def forward(self, x):"""前向传播,输出判别结果。:param x: 输入图像:return: 判别结果"""return self.main(x)# 模型定义
class TextToMultimodalModel(nn.Module):"""文本到多模态生成模型。"""def __init__(self, text_encoder_model_name, audio_generator_model_name):super(TextToMultimodalModel, self).__init__()self.text_encoder = TextEncoder(text_encoder_model_name)self.image_generator = ImageGenerator(768)self.video_generator = VideoGenerator(768)self.audio_generator = AudioGenerator(audio_generator_model_name)def forward(self, text):"""前向传播,将文本转换为图像、视频和音频。:param text: 输入文本:return: 生成的图像、视频和音频"""text_features = self.text_encoder(text)image = self.image_generator(text_features)video = self.video_generator(text_features)audio = self.audio_generator(text)return image, video, audio# 模型加载
def load_model(model_path, text_encoder_model_name, audio_generator_model_name):"""加载预训练的模型。:param model_path: 模型文件的路径:param text_encoder_model_name: 文本编码器模型名称:param audio_generator_model_name: 音频生成器模型名称:return: 加载的模型"""model = TextToMultimodalModel(text_encoder_model_name, audio_generator_model_name)if os.path.exists(model_path):model.load_state_dict(torch.load(model_path))else:logging.warning(f"模型文件 {model_path} 未找到,使用随机初始化的模型")model.eval()return model# 图像保存
def save_image(image, path, key=None):"""保存生成的图像。:param image: 生成的图像:param path: 保存路径:param key: 加密密钥"""if not os.path.exists(os.path.dirname(path)):os.makedirs(os.path.dirname(path))if key:encrypted_image = encrypt_data(image, key)with open(path, 'wb') as f:f.write(encrypted_image)else:image.save(path)# 视频保存
def save_video(video, path, key=None):"""保存生成的视频。:param video: 生成的视频:param path: 保存路径:param key: 加密密钥"""if not os.path.exists(os.path.dirname(path)):os.makedirs(os.path.dirname(path))if key:encrypted_video = encrypt_data(video, key)with open(path, 'wb') as f:f.write(encrypted_video)else:# 假设 video 是一个 numpy 数组import cv2fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(path, fourcc, 20.0, (64, 64))for frame in video:frame = (frame * 127.5 + 127.5).astype('uint8')out.write(frame)out.release()# 音频保存
def save_audio(audio, path, key=None):"""保存生成的音频。:param audio: 生成的音频:param path: 保存路径:param key: 加密密钥"""if not os.path.exists(os.path.dirname(path)):os.makedirs(os.path.dirname(path))if key:encrypted_audio = encrypt_data(audio, key)with open(path, 'wb') as f:f.write(encrypted_audio)else:# 假设 audio 是一个 numpy 数组from scipy.io.wavfile import writewrite(path, 22050, audio)# 数据集类
class TextToImageDataset(Dataset):"""文本到图像数据集类。"""def __init__(self, csv_file, transform=None, mode='train'):self.data = pd.read_csv(csv_file)self.data = clean_data(self.data)self.transform = transformself.mode = modeself.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')def __len__(self):return len(self.data)def __getitem__(self, idx):text = self.data.iloc[idx]['text']image_path = self.data.iloc[idx]['image_path']image = Image.open(image_path).convert('RGB')if self.transform:image = self.transform(image, self.mode)text_inputs = preprocess_text([text], self.tokenizer)return text_inputs, image# 模型训练
def train_model(config):"""训练文本到多模态生成模型。:param config: 配置参数"""transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])dataset = TextToImageDataset(config['data']['dataset_path'], transform=augment_data, mode='train')dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)device = torch.device(config['device'])model = TextToMultimodalModel(config['model']['text_encoder_model_name'], config['model']['audio_generator_model_name']).to(device)discriminator = Discriminator().to(device)optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])criterion_gan = nn.BCELoss()criterion_l1 = nn.L1Loss()criterion_mse = nn.MSELoss()scheduler_g = optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, 'min', patience=5)scheduler_d = optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, 'min', patience=5)writer = SummaryWriter(log_dir=config['training']['log_dir'])best_loss = float('inf')patience = 0max_patience = 10scaler = GradScaler()for epoch in range(config['training']['epochs']):model.train()discriminator.train()running_loss_g = 0.0running_loss_d = 0.0pbar = tqdm(dataloader, desc=f"Epoch {epoch + 1}")for i, (text_inputs, images) in enumerate(pbar):images = images.to(device)real_labels = torch.ones(images.size(0), 1).to(device)fake_labels = torch.zeros(images.size(0), 1).to(device)# 训练判别器optimizer_d.zero_grad()with autocast():real_outputs = discriminator(images)d_loss_real = criterion_gan(real_outputs, real_labels)generated_images, _, _ = model(text_inputs['input_ids'].to(device), text_inputs['attention_mask'].to(device))fake_outputs = discriminator(generated_images.detach())d_loss_fake = criterion_gan(fake_outputs, fake_labels)d_loss = (d_loss_real + d_loss_fake) / 2scaler.scale(d_loss).backward()scaler.step(optimizer_d)scaler.update()# 训练生成器optimizer_g.zero_grad()with autocast():generated_images, generated_videos, generated_audios = model(text_inputs['input_ids'].to(device), text_inputs['attention_mask'].to(device))g_outputs = discriminator(generated_images)g_loss_gan = criterion_gan(g_outputs, real_labels)g_loss_l1 = criterion_l1(generated_images, images)g_loss_mse = criterion_mse(generated_videos, videos) + criterion_mse(generated_audios, audios)g_loss = g_loss_gan + 100 * g_loss_l1 + 100 * g_loss_msescaler.scale(g_loss).backward()scaler.step(optimizer_g)scaler.update()running_loss_g += g_loss.item()running_loss_d += d_loss.item()pbar.set_postfix({'G Loss': g_loss.item(), 'D Loss': d_loss.item()})avg_loss_g = running_loss_g / len(dataloader)avg_loss_d = running_loss_d / len(dataloader)writer.add_scalar('Generator Loss', avg_loss_g, epoch)writer.add_scalar('Discriminator Loss', avg_loss_d, epoch)writer.add_scalar('Learning Rate (G)', optimizer_g.param_groups[0]['lr'], epoch)writer.add_scalar('Learning Rate (D)', optimizer_d.param_groups[0]['lr'], epoch)scheduler_g.step(avg_loss_g)scheduler_d.step(avg_loss_d)if avg_loss_g < best_loss:best_loss = avg_loss_gtorch.save(model.state_dict(), config['model']['path'])patience = 0else:patience += 1if patience >= max_patience:logging.info(f"提前停止于第 {epoch + 1} 轮")breaklogging.info(f"Epoch {epoch + 1}, Generator Loss: {avg_loss_g}, Discriminator Loss: {avg_loss_d}")writer.close()# 图像生成
def generate_images_batch(model, text_data, output_dir, key=None):"""生成图像。:param model: 模型:param text_data: 输入文本数据:param output_dir: 输出目录:param key: 加密密钥"""model.eval()with torch.no_grad():for text in text_data:input_tensor = preprocess_text([text], model.text_encoder.tokenizer)input_tensor = {k: v.to(device) for k, v in input_tensor.items()}image, video, audio = model(input_tensor['input_ids'], input_tensor['attention_mask'])image = image.squeeze(0).detach().cpu().numpy()image = (image * 127.5 + 127.5).astype('uint8')image = Image.fromarray(image.transpose(1, 2, 0))# 保存图像save_image(image, f"{output_dir}/{text}.png", key)# 保存视频video = video.squeeze(0).detach().cpu().numpy()video = (video * 127.5 + 127.5).astype('uint8')save_video(video, f"{output_dir}/{text}.mp4", key)# 保存音频audio = audio.squeeze(0).detach().cpu().numpy()save_audio(audio, f"{output_dir}/{text}.wav", key)# 图形用户界面
class TextToImageGUI:"""文本到多模态生成的图形用户界面。"""def __init__(self, root):self.root = rootself.root.title("文本生成多模态")self.config = load_config('config.yaml')self.device = torch.device(self.config['device'])self.models = {'模型1': load_model(self.config['model']['path1'], self.config['model']['text_encoder_model_name1'], self.config['model']['audio_generator_model_name1']),'模型2': load_model(self.config['model']['path2'], self.config['model']['text_encoder_model_name2'], self.config['model']['audio_generator_model_name2']),'模型3': load_model(self.config['model']['path3'], self.config['model']['text_encoder_model_name3'], self.config['model']['audio_generator_model_name3'])}self.selected_model = tk.StringVar(value='模型1')self.model_menu = tk.OptionMenu(root, self.selected_model, *self.models.keys(), command=self.change_model)self.model_menu.pack(pady=10)self.text_input = tk.Text(root, height=10, width=50)self.text_input.pack(pady=10)self.train_button = tk.Button(root, text="训练模型", command=self.train_model)self.train_button.pack(pady=10)self.epochs_label = tk.Label(root, text="训练轮次:")self.epochs_label.pack(pady=5)self.epochs_entry = tk.Entry(root)self.epochs_entry.insert(0, str(self.config['training']['epochs']))self.epochs_entry.pack(pady=5)self.generate_button = tk.Button(root, text="生成多模态数据", command=self.generate_multimodal)self.generate_button.pack(pady=10)self.image_label = tk.Label(root)self.image_label.pack(pady=10)self.progress_var = tk.IntVar()self.progress_bar = tk.ttk.Progressbar(root, variable=self.progress_var, maximum=100)self.progress_bar.pack(pady=10)self.history = []def change_model(self, model_name):self.model = self.models[model_name]def train_model(self):"""开始训练模型。"""try:epochs = int(self.epochs_entry.get())self.config['training']['epochs'] = epochsthreading.Thread(target=self._train_model_thread).start()except ValueError:messagebox.showerror("错误", "请输入有效的训练轮次数")def _train_model_thread(self):"""训练模型的线程。"""try:train_model(self.config)self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'], self.config['model']['audio_generator_model_name'])self.model.to(self.device)messagebox.showinfo("成功", "模型训练完成")except Exception as e:messagebox.showerror("错误", str(e))def generate_multimodal(self):"""生成多模态数据。"""text = self.text_input.get("1.0", tk.END).strip()if not text:messagebox.showwarning("警告", "请输入文本")returnself.model.eval()with torch.no_grad():input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])image = image.squeeze(0).detach().cpu().numpy()image = (image * 127.5 + 127.5).astype('uint8')image = Image.fromarray(image.transpose(1, 2, 0))# 显示图像img_tk = ImageTk.PhotoImage(image)self.image_label.config(image=img_tk)self.image_label.image = img_tk# 保存图像save_image(image, f"{self.config['data']['image_output_dir']}/{text}.png")save_video(video, f"{self.config['data']['video_output_dir']}/{text}.mp4")save_audio(audio, f"{self.config['data']['audio_output_dir']}/{text}.wav")self.history.append((text, image, video, audio))messagebox.showinfo("成功", "多模态数据已生成并保存")# 输出项目目录及所有文件
def list_files(startpath):"""输出项目目录及所有文件。:param startpath: 项目根目录"""for root, dirs, files in os.walk(startpath):level = root.replace(startpath, '').count(os.sep)indent = ' ' * 4 * (level)print('{}{}/'.format(indent, os.path.basename(root)))subindent = ' ' * 4 * (level + 1)for f in files:print('{}{}'.format(subindent, f))# 数据加密
def encrypt_data(data, key):fernet = Fernet(key)encrypted = fernet.encrypt(data.encode())return encrypteddef decrypt_data(encrypted, key):fernet = Fernet(key)decrypted = fernet.decrypt(encrypted).decode()return decrypted# 模型解释性
def explain_image(model, text, device):model.eval()with torch.no_grad():input_tensor = preprocess_text([text], model.text_encoder.tokenizer)input_tensor = {k: v.to(device) for k, v in input_tensor.items()}image, video, audio = model(input_tensor['input_ids'], input_tensor['attention_mask'])image = image.squeeze(0).detach().cpu().numpy()image = (image * 127.5 + 127.5).astype('uint8')image = Image.fromarray(image.transpose(1, 2, 0))# 解释生成过程explanation = "图像生成过程如下:\n"explanation += "1. 文本使用BERT进行编码。\n"explanation += "2. 编码后的文本特征传递给图像生成器。\n"explanation += "3. 生成的图像经过后处理确保格式正确。"return image, explanationdef visualize_attention(model, text, device):model.eval()with torch.no_grad():input_tensor = preprocess_text([text], model.text_encoder.tokenizer)input_tensor = {k: v.to(device) for k, v in input_tensor.items()}attention = model.text_encoder.model(**input_tensor).attentions[-1].squeeze(0).mean(dim=1).cpu().numpy()tokens = model.text_encoder.tokenizer.tokenize(text)fig, ax = plt.subplots()cax = ax.matshow(attention, cmap='viridis')fig.colorbar(cax)ax.set_xticklabels([''] + tokens)ax.set_yticklabels([''] + tokens)plt.show()# 自动化测试
class TestTextToImageModel(unittest.TestCase):def setUp(self):self.config = load_config('config.yaml')self.device = torch.device(self.config['device'])self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'], self.config['model']['audio_generator_model_name']).to(self.device)def test_generate_image(self):text = "美丽的日落"input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])self.assertIsNotNone(image)self.assertIsNotNone(video)self.assertIsNotNone(audio)def test_save_image(self):text = "美丽的日落"input_tensor = preprocess_text([text], self.model.text_encoder.tokenizer)input_tensor = {k: v.to(self.device) for k, v in input_tensor.items()}image, video, audio = self.model(input_tensor['input_ids'], input_tensor['attention_mask'])save_image(image, "test_output.png")save_video(video, "test_output.mp4")save_audio(audio, "test_output.wav")self.assertTrue(os.path.exists("test_output.png"))self.assertTrue(os.path.exists("test_output.mp4"))self.assertTrue(os.path.exists("test_output.wav"))if __name__ == "__main__":logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')config = load_config('config.yaml')# 输出项目目录及所有文件project_root = os.path.dirname(os.path.abspath(__file__))print("项目目录及所有文件:")list_files(project_root)# 检查数据集路径if not os.path.exists(config['data']['dataset_path']):raise FileNotFoundError(f"数据集路径 {config['data']['dataset_path']} 不存在")# 加载模型device = torch.device(config['device'])model = load_model(config['model']['path'], config['model']['text_encoder_model_name'], config['model']['audio_generator_model_name']).to(device)# 加载文本数据text_data = load_text_data(config['data']['input_file'])# 生成多模态数据generate_images_batch(model, text_data, config['data']['output_dir'])# 启动图形用户界面root = tk.Tk()app = TextToImageGUI(root)root.mainloop()# 运行自动化测试if __name__ == '__main__':unittest.main()

将上述代码保存为 text_to_multimodal.py,然后在命令行中运行 python text_to_multimodal.py 即可启动程序。确保你的环境中已经安装了所有必要的依赖项,如 torch, transformers, Pillow, matplotlib, opencv-python, scipy, cryptography, tensorboardX, tqdm, 和 tkinter。


http://www.ppmy.cn/ops/151815.html

相关文章

PHP的HMAC_SHA1和HMAC_MD5算法方法

很多做对接的小伙伴们都会遇到签名加密的问题&#xff0c;常用的就是hmac_sha1加密和hmac_md5加密&#xff0c;最开始用的是sha1加密&#xff0c;后来用到了md5加密&#xff0c;我以为直接把sha1改为md5就好了&#xff0c;结果试来试去跟文档提示的示例结果都对不上&#xff0c…

【SQL 中的分组查询与联合查询详解】

文章目录 SQL 中的分组查询与联合查询详解1. GROUP BY分组查询1.1 语句格式1.2 示例说明1.2.1 分别查询哥哥组和弟弟组的英语成绩总和1.2.2 查询哥哥组的所有成绩总和 2. 联合查询2.1 内连接2.1.1 语法格式2.1.2 执行过程 2.2 外连接2.2.1 左外连接2.2.2 右外连接 2.3 自连接2.…

微透镜阵列精准全检,白光干涉3D自动量测方案提效70%

广泛应用的微透镜阵列 微透镜是一种常见的微光学元件&#xff0c;通过设计微透镜&#xff0c;可对入射光进行扩散、光束整形、光线均分、光学聚焦、集成成像等调制&#xff0c;进而实现许多传统光学元器件难以实现的特殊功能。 微透镜阵列&#xff08;Microlens Array&#x…

ros2-7.5 做一个自动巡检机器人

7.5.1 需求及设计 又到了小鱼老师带着做最佳实践项目了。需求&#xff1a;做一个在各个房间不断巡逻并记录图像的机器人。 到达目标点后首先通过语音播放到达目标点信息&#xff0c; 再通过摄像头拍摄一张图片保存到本地。 7.5.2 编写巡检控制节点 在chapt7_ws/src下新建功…

跨站请求伪造(CSRF)介绍

一、什么是跨站请求伪造&#xff08;CSRF&#xff09; 跨站请求伪造&#xff08;Cross-Site Request Forgery&#xff0c;简称CSRF&#xff09;是一种针对网站的恶意利用方式&#xff0c;也被称为“One Click Attack”或“Session Riding”。 CSRF攻击通过伪装来自受信任用户…

.Net Core微服务入门系列(一)——项目搭建

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…

华为数通HCIE备考经验分享

在分享我的考试心得前我先介绍一下我自己&#xff0c;我叫郑同学&#xff0c;22岁&#xff0c;就读于深圳信息职业技术学院移动通信技术专业&#xff0c;在2024年的9月&#xff0c;我成功获得了HCIE-Datacom证书。 考证契机 我的备考之旅始于去年2023年的华为ICT大赛。在这场…

Swift 趣味开发:查找拼音首字母全部相同的 4 字成语(下)

概述 Swift 语言是一门现代化、安全、强大且还算性感的语言。在去年 WWDC 24 中苹果正式推出了秃头码农们期待许久的 Swift 6.0&#xff0c;它进一步完善了 Swift 语言的语法和语义&#xff0c;并再接再厉——强化了现代化并发模型的安全性和灵活性。 这里我们不妨用 Swift 来…