强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!

ops/2025/1/19 14:27:04/

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Transformer-LSTM+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)
Transformer-LSTM模型的架构:输入层:多个变量作为输入,形成一个多维输入张量。Transformer编码器:该编码器由多个Transformer编码器层组成,每个编码器层包含多头注意力机制和前馈网络。编码器层用于学习变量之间的关系。LSTM层:在Transformer编码器之后,将输出序列输入到LSTM层中。LSTM层用于处理序列,记忆先前的状态,并生成隐藏状态序列。输出层:将LSTM层的隐藏状态序列输入到输出层,通过全连接层进行最终的预测。输出层的神经元个数通常与预测目标的维度相匹配。训练过程中,可以使用已知的输入序列和目标序列来计算预测误差,并使用反向传播算法来更新模型的参数。优化器可以使用常见的梯度下降方法,如Adam。
多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。
2.先通过Transformer-LSTM封装因变量(y1 y2 y3 )与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。
3.data为数据集,5个输入特征,3个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3)的自变量x1,x2,x3,x4,x5。
4.main1.m为Transformer-LSTM主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。

在这里插入图片描述
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。

NSGA-II算法的基本思想与技术路线
1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt;
2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1;
3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种群Rt, 重复以上操作, 直到满足程序结束的条件。
在这里插入图片描述
数据集

在这里插入图片描述

程序设计


%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义结果存放模板
empty.position = [];        %输入变量存放
empty.cost = [];            %目标函数存放
empty.rank = [];            % 非支配排序等级
empty.domination = [];      %支配个体集合
empty.dominated = 0;        %支配个体数目
empty.crowdingdistance = [];%个体聚集距离
pop = repmat(empty, npop, 1);
%% 1、初始化种群
for i = 1 : npoppop(i).position = create_x(var);   %产生输入变量(个体)pop(i).cost = costfunction(pop(i).position);%计算目标函数
end
%% 2、构造非支配集
[pop,F] = nondominatedsort(pop);
%% 计算聚集距离
pop = calcrowdingdistance(pop,F);
%% 主程序(选择、交叉、变异)

参考资料

工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化陪您跨年!RBF神经网络+NSGAII多目标优化算法(Matlab)
工艺参数优化、工程设计优化来袭!BP神经网络+NSGAII多目标优化算法(Matlab)

北大核心工艺参数优化!SAO-BP雪融算法优化BP神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化上新!Elman循环神经网络+NSGAII多目标优化算法(Matlab)


http://www.ppmy.cn/ops/151401.html

相关文章

MindAgent:基于大型语言模型的多智能体协作基础设施

2023-09-18 ,加州大学洛杉矶分校(UCLA)、微软研究院、斯坦福大学等机构共同创建的新型基础设施,目的在评估大型语言模型在游戏互动中的规划和协调能力。MindAgent通过CuisineWorld这一新的游戏场景和相关基准,调度多智…

Day09-后端Web实战——部门管理开发Logback日志技术

目录 部门管理开发1. 删除部门1.1 需求分析 1.2 思路分析1.2.1 思路说明1.2.1 简单参数接收 1.3 代码实现1.4 Mybatis中的#与$ 2. 新增部门2.1 需求分析2.2 思路分析2.2.1 思路说明2.2.2 json参数接收 2.3 代码实现 3. 修改部门3.1 查询回显3.1.1 需求分析3.1.2 思路分析3.1.2.…

分布式项目新选择:Dubbo搭建方案

在当今的数字化时代,构建高性能、可扩展的分布式系统已成为众多企业应对业务增长和技术挑战的关键。Dubbo,作为阿里巴巴开源的一款高性能、轻量级的Java RPC框架,为Java开发者提供了一套完善的分布式服务治理方案。本文将详细介绍如何使用Dub…

密码机服务器在云计算中的应用与挑战

随着云计算技术的迅猛发展和普及,密码机服务器作为一种高效、专业的数据安全解决方案,正在云计算领域中扮演着越来越重要的角色。本文将探讨密码机服务器在云计算中的应用及其面临的挑战。 云计算技术涉及大量的数据传输和存储,数据的安全性和…

如何将本地 Node.js 服务部署到宝塔面板:完整的部署指南

文章简介: 将本地开发的 Node.js 项目部署到线上服务器是开发者常见的工作流程之一。在这篇文章中,我将详细介绍如何将本地的 Node.js 服务通过宝塔面板(BT 面板)上线。宝塔面板是一个强大的服务器管理工具,具有简洁的…

Unity HybridCLR Settings热更设置

需要热更的程序集放到 热更新Assembly Definitions中。 记得补充元数据AOT dlls 打包完成后遇到TypeLoadException: could not load type 时 可能需要在Assets/link.xml中增加对应的设置 <assembly fullname"your assembly" preserve"all"/> link…

CNCF云原生计算基金会

CNCF&#xff0c;全称为云原生计算基金会&#xff08;Cloud Native Computing Foundation&#xff09;&#xff0c;成立于2015年&#xff0c;是一个隶属于Linux基金会的非营利组织。CNCF旨在促进和支持开源技术的发展&#xff0c;特别是那些支持云原生&#xff08;cloud native…

MongoDB的安装、配置和基本操作

一、实验目的 1. 安装MongoDB&#xff0c;并正确配置相关参数。 2. 启动MongoDB服务&#xff0c;并确认服务已成功启动。 3. 使用MongoDB shell客户端连接MongoDB实例。 4. 查看当前MongoDB实例中的全部数据库列表。 5. 停止MongoDB服务操作。 二、实验环境准备 1.…