学英语学技术:Elasticsearch 线程池

ops/2025/1/19 8:10:40/

单词

汉语意思

音标

allocate

分配

/ˈæləˌkeɪt/

coordination

协调

/koʊˌɔːrdɪˈneɪʃn/

deprecated

废弃的

/ˈdɛprəˌkeɪtɪd/

elasticsearch

弹性搜索(专有名词)

/ˌɛlɪkˈsɜːrtʃ/

execute

执行

/ˈɛksɪˌkjuːt/

generic

通用的

/dʒəˈnɛrɪk/

initial

初始的

/ɪˈnɪʃəl/

metadata

元数据

/ˈmɛtəˌdeɪtə/

pending

待处理的

/ˈpɛndɪŋ/

proportional

比例的

/prəˈpɔːrʃənl/

queue

队列

/kjuː/

repository

仓库

/rɪˈpɑːzɪˌtɔːri/

scaling

扩展

/ˈskeɪlɪŋ/

snapshot

快照

/ˈsnæpˌʃɑːt/

synched

同步的

/sɪŋkt/

throttled

受限的

/ˈθrɑːtld/

translog

事务日志

/ˈtrænsˌlɔːɡ/

unbounded

无界限的

/ʌnˈbaʊndɪd/

warm-up

预热

/ˈwɔːrmˌʌp/

workload

工作负载

/ˈwɜːrkˌloʊd/

Thread pools

A node uses several thread pools to manage memory consumption. Queues associated with many of the thread pools enable pending requests to be held instead of discarded.

There are several thread pools, but the important ones include:

generic

For generic operations (for example, background node discovery). Thread pool type is scaling.

search

For count/search/suggest operations. Thread pool type is fixed_auto_queue_size with a size of int((# of allocated processors * 3) / 2) + 1, and initial queue_size of 1000.

search_throttled

For count/search/suggest/get operations on search_throttled indices. Thread pool type is fixed_auto_queue_size with a size of 1, and initial queue_size of 100.

search_coordination

For lightweight search-related coordination operations. Thread pool type is fixed with a size of a max of min(5, (# of allocated processors) / 2), and queue_size of 1000.

get

For get operations. Thread pool type is fixed with a size of # of allocated processors, queue_size of 1000.

analyze

For analyze requests. Thread pool type is fixed with a size of 1, queue size of 16.

write

For single-document index/delete/update and bulk requests. Thread pool type is fixed with a size of # of allocated processors, queue_size of 10000. The maximum size for this pool is 1 + # of allocated processors.

snapshot

For snapshot/restore operations. Thread pool type is scaling with a keep-alive of 5m and a max of min(5, (# of allocated processors) / 2).

snapshot_meta

For snapshot repository metadata read operations. Thread pool type is scaling with a keep-alive of 5m and a max of min(50, (# of allocated processors* 3)).

warmer

For segment warm-up operations. Thread pool type is scaling with a keep-alive of 5m and a max of min(5, (# of allocated processors) / 2).

refresh

For refresh operations. Thread pool type is scaling with a keep-alive of 5m and a max of min(10, (# of allocated processors) / 2).

listener

Mainly for java client executing of action when listener threaded is set to true. Thread pool type is scaling with a default max of min(10, (# of allocated processors) / 2).

fetch_shard_started

For listing shard states. Thread pool type is scaling with keep-alive of 5m and a default maximum size of 2 * # of allocated processors.

fetch_shard_store

For listing shard stores. Thread pool type is scaling with keep-alive of 5m and a default maximum size of 2 * # of allocated processors.

flush

For flushsynced flush, and translog fsync operations. Thread pool type is scaling with a keep-alive of 5m and a default maximum size of min(5, ( # of allocated processors) / 2).

force_merge

For force merge operations. Thread pool type is fixed with a size of 1 and an unbounded queue size.

management

For cluster management. Thread pool type is scaling with a keep-alive of 5m and a default maximum size of 5.

system_read

For read operations on system indices. Thread pool type is fixed with a default maximum size of min(5, (# of allocated processors) / 2).

system_write

For write operations on system indices. Thread pool type is fixed with a default maximum size of min(5, (# of allocated processors) / 2).

system_critical_read

For critical read operations on system indices. Thread pool type is fixed with a default maximum size of min(5, (# of allocated processors) / 2).

system_critical_write

For critical write operations on system indices. Thread pool type is fixed with a default maximum size of min(5, (# of allocated processors) / 2).

watcher

For watch executions. Thread pool type is fixed with a default maximum size of min(5 * (# of allocated processors), 50) and queue_size of 1000.

Thread pool settings are static and can be changed by editing elasticsearch.yml. Changing a specific thread pool can be done by setting its type-specific parameters; for example, changing the number of threads in the write thread pool

Thread pool types

The following are the types of thread pools and their respective parameters:

fixed

The fixed thread pool holds a fixed size of threads to handle the requests with a queue (optionally bounded) for pending requests that have no threads to service them.

The size parameter controls the number of threads.

The queue_size allows to control the size of the queue of pending requests that have no threads to execute them. By default, it is set to -1 which means its unbounded. When a request comes in and the queue is full, it will abort the request.

fixed_auto_queue_size

This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.

Deprecated in 7.7.0.

The experimental fixed_auto_queue_size thread pool type is deprecated and will be removed in 8.0.

The fixed_auto_queue_size thread pool holds a fixed size of threads to handle the requests with a bounded queue for pending requests that have no threads to service them. It’s similar to the fixed threadpool, however, the queue_size automatically adjusts according to calculations based on Little’s Law. These calculations will potentially adjust the queue_size up or down by 50 every time auto_queue_frame_size operations have been completed.

The size parameter controls the number of threads.

The queue_size allows to control the initial size of the queue of pending requests that have no threads to execute them.

The min_queue_size setting controls the minimum amount the queue_size can be adjusted to.

The max_queue_size setting controls the maximum amount the queue_size can be adjusted to.

The auto_queue_frame_size setting controls the number of operations during which measurement is taken before the queue is adjusted. It should be large enough that a single operation cannot unduly bias the calculation.

The target_response_time is a time value setting that indicates the targeted average response time for tasks in the thread pool queue. If tasks are routinely above this time, the thread pool queue will be adjusted down so that tasks are rejected.

scaling

The scaling thread pool holds a dynamic number of threads. This number is proportional to the workload and varies between the value of the core and max parameters.

The keep_alive parameter determines how long a thread should be kept around in the thread pool without it doing any work.

Allocated processors setting

The number of processors is automatically detected, and the thread pool settings are automatically set based on it. In some cases it can be useful to override the number of detected processors. This can be done by explicitly setting the node.processors setting.

There are a few use-cases for explicitly overriding the node.processors setting:

  1. If you are running multiple instances of Elasticsearch on the same host but want Elasticsearch to size its thread pools as if it only has a fraction of the CPU, you should override the node.processors setting to the desired fraction, for example, if you’re running two instances of Elasticsearch on a 16-core machine, set node.processors to 8. Note that this is an expert-level use case and there’s a lot more involved than just setting the node.processors setting as there are other considerations like changing the number of garbage collector threads, pinning processes to cores, and so on.
  2. Sometimes the number of processors is wrongly detected and in such cases explicitly setting the node.processors setting will workaround such issues.

In order to check the number of processors detected, use the nodes info API with the os flag.

中文总结:

以下是文章的关键信息,以中文展示:

  • Elasticsearch中的线程池: Elasticsearch使用多个线程池来管理内存消耗,线程池附带队列用于存储待处理的请求。

  • 线程池类型: 主要线程池包括 generic, search, search_throttled, search_coordination, get, analyze, write, snapshot, snapshot_meta, warmer, refresh, listener, fetch_shard_started, fetch_shard_store, flush, force_merge, management, system_read, system_write, system_critical_read, system_critical_write, watcher。

  • 线程池种类: 有三种线程池类型:

    • 固定型(fixed):使用固定数量的线程,具有可选的有界队列。

    • 自动调整队列大小(fixed_auto_queue_size):已废弃,根据工作负载动态调整队列大小。

    • 扩展型(scaling):根据工作负载动态调整线程数量。

  • 线程池配置: 线程池设置是静态的,可以通过编辑 elasticsearch.yml 文件进行修改。

  • 搜索线程池: 配置为 fixed_auto_queue_size 类型,线程数量计算为 int((分配的处理器数量 * 3) / 2) + 1,初始队列大小为1000。

  • 写入线程池: 使用固定型(fixed),线程数量等于分配的处理器数量,队列大小为10000。

  • 快照操作: 使用扩展型线程池(scaling),保持存活时间为5分钟,最大线程数量基于处理器数量计算。

  • 强制合并操作: 使用固定型线程池(fixed),只有一个线程,队列大小为无限制。

  • 监控线程池: 使用固定型(fixed),线程数量为 min(5 * (分配的处理器数量), 50),队列大小为1000。

  • 分配处理器: 处理器数量自动检测,但可以通过 node.processors 设置手动调整,以优化性能或修正检测问题。


http://www.ppmy.cn/ops/151327.html

相关文章

Level2逐笔成交逐笔委托毫秒记录:今日分享优质股票数据20241230

逐笔委托逐笔成交下载 链接: https://pan.baidu.com/s/11Tdq06bbYX4ID9dEaiv_lQ?pwdcge6 提取码: cge6 Level2逐笔成交逐笔委托数据分享下载 利用Level2的逐笔交易和委托数据,这种以毫秒为单位的详细信息能揭露众多关键信息,如庄家意图、伪装行为&…

纯代码实现给WordPress添加文章复制功能

在给wordpress添加内容时,有时会遇到文章复制的功能,但是wordpress又没有这个功能。把下面一段代码添加到functions.php文件中,就可以实现这个功能。 /** Function for post duplication. Dups appear as drafts. User is redirected to the…

【视觉惯性SLAM:十九、ORB-SLAM3 中的闭环及地图融合线程】

ORB-SLAM3 的闭环检测和地图融合线程是其重要组成部分,旨在提升位姿估计精度、优化地图一致性以及减少累计误差。本章分为两大部分:闭环检测和地图融合,每部分包括具体步骤及其原理、实现细节和扩展。 19.1 检测共同区域 闭环检测的目标是识…

00_专栏《Redis 7.x企业级开发实战教程》介绍

大家好,我是袁庭新。Redis作为一款高性能、多用途的内存数据库,凭借其丰富的数据结构、高速读写能力、原子操作特性及发布订阅等功能,在缓存加速、分布式锁、消息队列等场景中不可或缺,极大提升了系统性能与开发效率,是现代互联网应用架构的关键组件。 你是否在学习Redis…

Java开发提效秘籍:巧用Apache Commons IO工具库

一、引言 在 Java 开发的广袤领域中,输入输出(I/O)操作宛如一座桥梁,连接着程序与外部世界,从文件的读取与写入,到网络数据的传输,I/O 操作无处不在,其重要性不言而喻。然而&#xf…

Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider

开发语言:Python框架:flaskPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 价格区间界面 用户信息界面 品牌管理 笔记本管理 电脑主机…

考研408《操作系统》复习笔记,第七章《线程》

参考资料 s​​​​​​​c​​​​​​​2.1_6_线程的实现方式和多线程模型_哔哩哔哩_bilibili 多线程编程:一次性搞懂线程同步机制_哔哩哔哩_bilibili 【操作系统】进程和线程的区别_哔哩哔哩_bilibili 一、线程是啥 在前后端开发里我们就经常遇到线程&#xff…

技术总结:Vue在前端开发中的应用与实践

​🌈个人主页:前端青山 🔥系列专栏:Vue篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来Vue篇专栏内容:Vue-开发应用与实践 #博客之星2024年度总评选-主题文章创作# 前言 嗨喽,我是青山,本年度创作已然…