开源AI微调指南:入门级简单训练,初探AI之路

ops/2025/1/16 3:44:23/

1+1=2,如何让 1+1=3?

简单的微调你的 AI

微调前的效果,怎么调教它都是 1+1=2.

 

666bfe5fce8750bfd21dc94bdf4bdfcf.png

要对其进行微调(比如训练1+1=3),可以按以下步骤进行。

确保你已经安装了以下工具和库:

  • ollama+llama3.2
  • Python 3.8+
  • PyTorch
  • Hugging Face Transformers
  • Datasets

步骤 1:准备训练数据

1. 格式化数据:准备数据集,将其格式化为模型能理解的形式。对于你的例子(1+1=3),你可以将数据写入JSON或CSV文件,结构如下:

[{"prompt": "1+1=","completion": "3"}
]
    • 在JSON文件中,每条记录包括“prompt”(提示)和“completion”(目标答案)。
    • 将数据保存为 training_data.json

2. 确保数据集多样化:如果仅有“1+1=3”一条数据,模型可能无法很好地泛化。可以添加更多相似的数学问题以确保模型能区分不同的问题。

步骤 2:安装和配置所需的环境

1. 安装Python:确保你的Windows上已经安装了Python 3.8+。

2. 安装Ollama的依赖库
打开命令提示符,使用以下命令安装所需的Python库:

pip install transformers torch datasets

 

558a596e423ae054c807d48016cf1b47.png

3. 安装CUDA(可选):如果你的系统有NVIDIA显卡,安装CUDA可以加速训练。

cmd 输入

nvidia-smi

这里支持的 CUDA<=12.6 就可以

 

9e0b71ab2f8dbb234ce38d17311d8391.png

可以在 CUDA 里找到大概 3G 的样子

 

f8fa9bf21ce82e4e674f19cf361a7c7d.png

输入

nvcc -V

说明已经安装成功了

 

c0df1378c51dc87091ba2b25bc7edc1f.png

步骤 3:微调Llama 3.2模型

1. 加载Llama模型:创建一个Python脚本,例如 fine_tune_llama.py,用来加载模型和数据集。

2. 编写微调脚本:下面是一个简化的微调脚本示例。将以下代码复制到 fine_tune_llama.py 中:

 

7bceec94ca9b025a48d1449c3d0c4914.png

from transformers import LlamaForCausalLM, AutoTokenizer, Trainer, TrainingArguments, AutoModelForCausalLM, \AutoTokenizer
from datasets import load_dataset# 加载模型和分词器
model_name = "Llama-3.2-1B"  # 替换为你的模型名称
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, legacy=False)# 检查词汇文件路径
print(type(tokenizer))# 确保分词器有 pad_token
if tokenizer.pad_token is None:tokenizer.add_special_tokens({'pad_token': '[PAD]'})model.resize_token_embeddings(len(tokenizer))# 加载数据集
dataset = load_dataset("json", data_files="training_data.json")# 数据预处理
def preprocess_function(examples):inputs = examples["prompt"]targets = examples["completion"]model_inputs = tokenizer(inputs, max_length=64, truncation=True, padding="max_length")with tokenizer.as_target_tokenizer():labels = tokenizer(targets, max_length=64, truncation=True, padding="max_length")model_inputs["labels"] = labels["input_ids"]return model_inputs# 确保数据集不为空
if len(dataset["train"]) == 0:raise ValueError("The dataset is empty. Please check the dataset file.")# 数据预处理
tokenized_dataset = dataset["train"].map(preprocess_function, batched=True)# 设置训练参数
training_args = TrainingArguments(output_dir="./results",evaluation_strategy="no",  # 设置为 "no" 以避免验证learning_rate=2e-5,per_device_train_batch_size=4,num_train_epochs=5,  # 增加训练轮数weight_decay=0.01,remove_unused_columns=False,  # 设置为 False 以避免删除未使用的列
)# 使用Trainer进行训练
trainer = Trainer(model=model,args=training_args,train_dataset=tokenized_dataset,
)trainer.train()# 手动保存模型和分词器
trainer.save_model("./results")
tokenizer.save_pretrained("./results")

3. 运行训练脚本:在命令提示符中执行以下命令,开始训练:

python fine_tune_llama.py

执行的情况

 

7987be7a9e179edbd16f1af751fb4271.png

    • 此步骤会将模型在你的自定义数据集上进行微调。
    • 训练完成后,模型将保存在 ./results 文件夹中。

 

bf52c20aefd40bd1e4d9cc5fa00e2a83.png

步骤 4:验证训练效果

1. 加载微调后的模型:训练完成后,创建一个新的脚本 evaluate_llama.py 来加载和验证模型。

2. 编写验证脚本:将以下代码复制到 evaluate_llama.py 中,用于验证模型是否学到了“1+1=3”。

 

a1e222ef9728c26e0c6542813d2482df.png

from transformers import LlamaForCausalLM, LlamaTokenizer# 加载微调后的模型和分词器
model_name = "./results"  # 替换为你的微调后模型路径
model = LlamaForCausalLM.from_pretrained(model_name)
tokenizer = LlamaTokenizer.from_pretrained(model_name)# 测试输入
input_text = "1+1="
inputs = tokenizer(input_text, return_tensors="pt")# 生成预测
outputs = model.generate(**inputs, max_length=10)
completion = tokenizer.decode(outputs[0], skip_special_tokens=True)print("模型输出:", completion)

3. 运行验证脚本

python evaluate_llama.py
    • 运行后,你应该看到模型输出“1+1=3”。
    • 如果模型没有给出期望的结果,可以增加训练数据量或调整训练参数,再次训练。

 

我是栈江湖,如果你喜欢此文章,不要忘记点赞+关注

 

 

 


http://www.ppmy.cn/ops/150455.html

相关文章

基于WebRTC实现音视频通话

客户端采用 WebRTC 技术&#xff08;推流&#xff09;&#xff0c;通讯用 websocket。 WebRTC 像是一个面试过程&#xff1a; 第一步&#xff1a;发起方&#xff08;拨打电话者&#xff09;点击拨打电话时&#xff0c;获取本地媒体流并推流给接收方同时捕获接收方推过来的流&a…

计算机网络之---SSL/TLS协议

SSL/TLS协议 **SSL&#xff08;Secure Sockets Layer&#xff09;和TLS&#xff08;Transport Layer Security&#xff09;**是加密协议&#xff0c;用于确保通过不安全的网络&#xff08;如互联网&#xff09;传输的数据的安全性和隐私。它们通过提供数据加密、身份验证和数据…

jsx语法中el-table-v2中cellRender如何使用动态绑定

答案&#xff1a;:attribute"xx"改为attribute{xx} 改写&#xff1a; const columns ref([{ key: index, dataKey: index, title: t(setting.index), width: 100 },{ key: no, dataKey: no, title: t(setting.key), width: 100 },{ key: name, dataKey: name, tit…

【update 更新数据语法合集】.NET开源ORM框架 SqlSugar 系列

系列文章目录 &#x1f380;&#x1f380;&#x1f380; .NET开源 ORM 框架 SqlSugar 系列 &#x1f380;&#x1f380;&#x1f380; 文章目录 系列文章目录前言 &#x1f343;一、实体对象更新1.1 单条与批量1.2 不更新某列1.3 只更新某列1.4 NULL列不更新1.5 无主键/指定列…

机器学习 - 如何选择函数集合?

一、关于机器学习的基本过程 对一个预测任务&#xff0c;输入特征向量为 &#x1d499;&#xff0c;输出标签为 &#x1d466;&#xff0c;我们选择一个函数集合 F&#xff0c;通过学习算法 &#x1d49c; 和一组训练样本 &#x1d49f;&#xff0c;从 F 中学习到函数 &#x…

C#中 string.Equals 和 == 区别

在 C# 中&#xff0c;string.Equals方法和运算符都可用于比较字符串&#xff0c;但它们在某些方面存在区别&#xff0c;主要如下&#xff1a; **string.Equals方法&#xff1a;**是一个实例方法&#xff0c;用于比较两个字符串对象的内容是否相等&#xff0c;比较时会根据字符…

phpstorm jetbrain 配置review code

禁用Unused CSS selector 步骤&#xff1a; 在 PhpStorm 中&#xff0c;点击顶部菜单 File > Settings&#xff08;Windows/Linux&#xff09;或 PhpStorm > Preferences&#xff08;macOS&#xff09;。在 Inspections 界面左侧的搜索框中输入 CSS。展开 CSS 部分&…

算法-贪心算法简单介绍

下面是贪心算法视频课的导学内容. 目录 1. 什么是贪心算法?2. 贪心算法简单的三个例子:1. 找零问题2. 最小路径和问题3. 背包问题 3. 贪心算法的特点4. 贪心算法学习的方式? 1. 什么是贪心算法? 简单来说, 我们称以局部最优进而使得全局最优的一种思想实现出来的算法为贪心…