机器学习算法(一): 基于逻辑回归的分类预测

ops/2025/1/15 14:30:28/

1 逻辑回归的介绍和应用

1.1 逻辑回归的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

1.1 逻辑回归的应用

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。

逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

说了这些逻辑回归的概念和应用,大家应该已经对其有所期待了吧,那么我们现在开始吧!!!

2 学习目标

  • 了解 逻辑回归 的理论
  • 掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

3 代码流程

  • Part1 Demo实践
    • Step1:库函数导入
    • Step2:模型训练
    • Step3:模型参数查看
    • Step4:数据和模型可视化
    • Step5:模型预测
  • Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践
    • Step1:库函数导入
    • Step2:数据读取/载入
    • Step3:数据信息简单查看
    • Step4:可视化描述
    • Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
    • Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

4 算法实战

4.1 Demo实践

Step1:库函数导入

##  基础函数库
import numpy as np ## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

Step2:模型训练

##Demo演示LogisticRegression分类## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])## 调用逻辑回归模型
lr_clf = LogisticRegression()## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

 

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()

### 可视化预测新样本plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()

Step5:模型预测

## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

4.2 基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

Step1:库函数导入

##  基础函数库
import numpy as np 
import pandas as pd## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

变量描述
sepal length花萼长度(cm)
sepal width花萼宽度(cm)
petal length花瓣长度(cm)
petal width花瓣宽度(cm)
target鸢尾的三个亚属类别,'setosa'(0), 'versicolor'(1), 'virginica'(2)

Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息
iris_features.info()

## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
iris_features.tail()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target

## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()

## 对于特征进行一些统计描述
iris_features.describe()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000

从统计描述中我们可以看到不同数值特征的变化范围。

Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

for col in iris_features.columns:sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)plt.title(col)plt.show()

利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()plt.show()

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

我们可以发现其准确度为1,代表所有的样本都预测正确了。

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为:86.67%86.67%,这是由于'versicolor'(1)和 'virginica'(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

5 重要知识点

逻辑回归 原理简介:

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

其对应的函数图像可以表示如下:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()


http://www.ppmy.cn/ops/150307.html

相关文章

UML系列之Rational Rose笔记八:类图

一、新建类图 首先依旧是新建要绘制的类图;选择class diagram; 修改命名; 二、工作台介绍 正常主要就是使用到class还有直接关联箭头就行; 如果不要求规范,直接新建一些需要的类,然后写好关系即可&#…

【HTML+CSS+JS+VUE】web前端教程-29-清除浮动

浮动副作用 当元素设置float浮动后,该元素就会脱离文档流并向左/向右浮动 浮动元素会造成父元素高度塌陷 后续元素会收到影响 清除浮动 当父元素出现塌陷的时候,对布局是不利的,所以我们必须清除副作用解决方案有很多种 父元素设置高度 受影响的元素增加clear属性 overflow…

鸿蒙报错Init keystore failed: keystore password was incorrect

报错如下: > hvigor ERROR: Failed :entry:defaultSignHap... > hvigor ERROR: Tools execution failed. 01-13 16:35:55 ERROR - hap-sign-tool: error: Init keystore failed: keystore password was incorrect * Try the following: > The key stor…

如何优化爬虫效率?

以下是一些优化爬虫效率和避免被网站封锁的技巧: 优化爬虫效率 使用并发技术: 多线程:适用于I/O密集型任务,如网络请求,通过Java的Thread或ExecutorService实现并发请求,提高数据抓取速度。多进程&#x…

记录一个v-if与自定义指令的BUG

在做某个系统的时候因为element自带的v-input和v-input-number不能满足所需要的功能,例如限制小数位数,最大值最小值和值是否允许存在非0之类的状态,写了一个自定义指令v-onlyNumber来满足需求(v-onlyNumber在我其他文章内有直接copy就行)&am…

Java Agent(三)、ASM 操作字节码入门

目录 1、前言 2、什么是ASM? 2.1、工作流程 2.2、ASM集合核心API 2.1.1、ClassReader 2.1.2、ClassWriter 2.1.3、 ClassVisitor 2.1.4、MethodVisitor 2.1.5、 FieldVisitor 2.1.6、Opcodes 3、简单示例 3.1、maven依赖 3.2、hello world 3.3、执行结…

nexus搭建maven私服

说到maven私服每个公司都有,比如我上一篇文章介绍的自定义日志starter,就可以上传到maven私服供大家使用,每次更新只需deploy一下就行,以下就是本人搭建私服的步骤 使用docker安装nexus #拉取镜像 docker pull sonatype/nexus3:…

.Net8 Avalonia跨平台UI框架——<vlc:VideoView>控件播放海康监控、摄像机视频(Windows / Linux)

一、UI效果 二、新建用户控件:VideoViewControl.axaml 需引用:VideoLAN.LibVLC.Windows包 Linux平台需安装:VLC 和 LibVLC (sudo apt-get update、sudo apt-get install vlc libvlccore-dev libvlc-dev) .axaml 代码 注…