Autoencoder(李宏毅)机器学习 2023 Spring HW8 (Boss Baseline)

ops/2025/1/13 1:02:57/

1. Autoencoder 简介

Autoencoder是一种用于学习数据高效压缩表示的人工神经网络。它由两个主要部分组成:

Encoder

  • 编码器将输入数据映射到一个更小的、低维空间中的压缩表示,这个空间通常称为latent space或bottleneck。

  • 这一过程可以看作是数据压缩,去除冗余信息,仅保留最重要的特征。

Decoder

  • 解码器从潜在表示中重构原始输入数据。

  • 理想情况下,解码器的输出应尽可能接近原始输入。

Schema of a autoencoder (source: https://en.wikipedia.org/wiki/Autoencoder)

2. Autoencoder的种类

2.1 Vanilla Autoencoder

Vanilla Autoencoder (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pdf)

vanilla autoencoder是最简单形式的自动编码器,旨在通过瓶颈层尽可能准确地重构输入数据。它是更高级自动编码器变体的基础。

Vanilla autoencoder的训练目标是最小化输入 x 和输出 x^\prime之间的重构损失. 常见的损失函数包括:

均方误差(MSE):适用于连续数据。

\text{MSE Loss}= \frac{1}{n} \sum_{i=1}^{n} (x_i - x_i')^2 \\

二元交叉熵损失(Binary Cross-Entropy Loss): 适用于二元数据。

\text{BCE Loss} = - \frac{1}{n} \sum_{i=1}^{n} \left[ x_i \log(x_i') + (1 - x_i) \log(1 - x_i') \right] \\

2.2 Denoising Autoencoder

Denoising Autoencoder (source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/auto_v8.pdf)

Denoising autoencoder (DAE) 是一种自动编码器变体,它专门训练从受损(有噪声)的输入中重构干净的输入数据。这使其成为学习有意义特征和执行数据去噪任务的强大工具。

原始输入数据通过添加噪声或引入干扰被人为破坏,生成带噪输入。常见的破坏类型包括:

  • 高斯噪声:在输入数据中添加随机噪声。

  • 椒盐噪声:随机翻转图像中的像素值。

  • 遮掩噪声:将输入的随机部分设为零。

  • 随机失活噪声:随机丢弃部分特征。

与基础型自动编码器类似,常用的损失函数包括均方误差(MSE)和二元交叉熵损失(Binary Cross-Entropy Loss)。

2.3 变分自动编码器 Variational Autoencoder (VAE)

Variationaler Autoencoder (source: https://www.geeksforgeeks.org/variational-autoencoders/)

变分自动编码器(VAE)是一种用于学习数据概率表示的自动编码器。与标准自动编码器将数据编码为固定的潜在表示不同,VAE 将数据编码为潜在空间中的一个分布(通常是高斯分布)。这使得 VAE 在生成任务中尤其有用。

VAE 的三个主要组成部分:

编码器(Encoder)

  • 编码器将输入数据 x 映射到潜在分布 q(z|x) .。

  • 对于每个潜在变量,编码器输出两个参数:

    • 均值(\mu

    • 标准差(\sigma

潜在空间(Latent Space)

  • 表示输入数据的压缩概率分布。

  • 潜在空间中的变量 z 通过以下公式采样:\\ z = \mu + \sigma \cdot \epsilon \\ 其中 \epsilon \sim \mathcal{N}(0, I)。这种操作称为重参数化技巧(reparameterization trick),它允许通过随机采样过程进行反向传播。

解码器(Decoder)

  • 解码器将潜在变量 z 映射回原始数据空间 p(x|z)

  • 它尝试从潜在表示中重构输入数据 x^\prime

2.3.1 损失函数

VAE 的损失函数由两部分组成:

重构损失 \mathcal{L}_{\text{recon}}

  • 它衡量重构数据与原始数据的匹配程度。

  • 我们通常使用二元交叉熵或均方误差。

KL 散度 \mathcal{L}_{\text{KL}}

  • 它使潜在空间分布 q(z|x) 接近先验分布 p(z) , 通常是标准高斯分布 \mathcal{N}(0, I) .

  • 定义为: \mathcal{L}_{\text{KL}} = D_{\text{KL}}(q(z|x) \| p(z)) \\ 该项正则化潜在空间,确保插值平滑且具有意义。

总损失公式为:

\mathcal{L} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{KL}}\\

2.3.2 证据下界 Evidence Lower Bound (ELBO)

在变分自动编码器(VAE)中,核心目标是最大化输入数据的边际似然 p(x) ,即尽可能解释数据。为此,一个重要的数学工具是证据下界(ELBO)。

2.3.2.1 什么是 ELBO?

ELBO 是通过变分推断近似数据边际似然


http://www.ppmy.cn/ops/149603.html

相关文章

【博主推荐】VUE常见问题及解决方案

文章目录 1.找不到模块“../views/index.vue”或其相应的类型声明。ts(2307)2.当改变 Vue 实例中的数据时,视图没有相应地更新3.在某些复杂的异步操作或者多个数据交互场景下,数据绑定的更新在时间上出现延迟4.父组件无法将数据正确地传递给子组件&#…

数据结构——栈的实现

今天,我们来写一下关于栈的博文。 1.首先我们先了解一下什么是栈? 一:概念: 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端称为栈顶,另…

mysql之基本select语句 运算符 排序分页

1.SQL的分类 DDL:数据定义语言. CREATE ALTER DROP RENAME TRUNCATE DML: 数据操作语言. INSERT DELETE UPDATE SELECT 重中之重 DCL: 数据控制语言. COMMIT ROLLBACK SAVEPOINT GRANT REVOKE 2.SQL语言的规则与规范 1.基本规则 SQL可以在一行或多行,为了提高可…

智慧城市可行性研究报告(第四章)

4 智慧消防系统建设 4.1 项目建设依据 4.1.1 政策依据 智慧消防是智慧城市建设公共安全领域中不可或缺的部分,是智慧城市建设的亮点和突破口,自2017年1月19日公安部召开“2017年消防工作会议”以来,围绕“智慧消防”这一主体,国家不断出台各种举措,大力推动“智慧消防”…

React Context用法总结

1. 基本概念 1.1 什么是 Context Context 提供了一种在组件树中共享数据的方式,而不必通过 props 显式地逐层传递。它主要用于共享那些对于组件树中许多组件来说是"全局"的数据。 1.2 基本用法 // 1. 创建 Context const ThemeContext React.createC…

数据结构初阶---排序

一、排序相关概念与运用 1.排序相关概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的…

【Git】配置相关操作

Git 配置相关操作 Git的配置文件 Git有三个主要的配置文件&#xff1a; 三个配置文件的优先级是 ① < ② < ③ ① 系统全局配置(–system)&#xff1a;包含了适用于系统所有用户和所有仓库&#xff08;项目&#xff09;的配置信息&#xff0c;存放在 Git 安装目录下&…

【灵码助力安全3】——利用通义灵码辅助智能合约漏洞检测的尝试

前言 随着区块链技术的快速发展&#xff0c;智能合约作为去中心化应用&#xff08;DApps&#xff09;的核心组件&#xff0c;其重要性日益凸显。然而&#xff0c;智能合约的安全问题一直是制约区块链技术广泛应用的关键因素之一。由于智能合约代码一旦部署就难以更改&#xf…