python学opencv|读取图像(三十一)缩放图像的三种方法

ops/2025/1/12 13:43:17/

【1】引言

前序学习进程中,我们至少掌握了两种方法,可以实现对图像实现缩放。

第一种方法是调用cv2.resize()函数实现,相关学习链接为:

pythonopencv|读取图像(三)放大和缩小图像_python opencv 读取图片缩放-CSDN博客

第二种方法是在cv2.getRotationMatrix2D()函数旋转缩放图像时,顺带实现了图像缩放:

pythonopencv|读取图像(二十八)使用cv2.getRotationMatrix2D()函数旋转缩放图像-CSDN博客

实际上,对于第二种方法,如果我们只设置旋转角度=0,其实就是只对图像进行放大和缩小。为验证这个猜想,我们可以做测试。

【2】前两种方法代码测试

【2.1】cv2.getRotationMatrix2D()函数缩放

首先我们给出完整代码:

python">import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
src = cv.imread('src.png')
rows=len(src) #读取图像行数
cols=len(src[0]) #读取图像列数
center=(rows/2,cols/2) #旋转中心
#M=np.float32([[1,0,50],#[0,1,200]]) #M矩阵,x=50,y=200
M=cv.getRotationMatrix2D(center,0,0.8) #旋转并缩放图像
dst=cv.warpAffine(src,M,(cols,rows)) #输出图像
cv.imshow('src-pingyi', dst)  # 在屏幕展示绘制圆形的效果
cv.imwrite('src-suofang.png', dst)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

其中对于函数的设置,把旋转角度设定为0,缩放倍数为0.8:

M=cv.getRotationMatrix2D(center,0,0.8) #旋转并缩放图像

使用的原始图像为:

图1 src.png

缩放后的图像为:

图2  缩小0.8倍后的图像

如果我们把缩放倍数放大到1.5倍:

M=cv.getRotationMatrix2D(center,0,1.5) #旋转并缩放图像

代码运行后的图像为:

图3 放大1.5倍后的图像

其实对比图1、图2和图3,会发现图3对原始图像进行了裁切,这种放大效果和cv2.resize()函数相比不一样,cv2.resize()函数本身不会裁切。

【2.2】cv2.resize()函数缩放

为了实现对比cv2.resize()函数放大效果的对比,调用该函数来放大图像,给出完整代码如下:

python">import cv2  # 引入CV模块# 读取图片
image = cv2.imread('src.png')# 定义放大因子
scale_factor = 1.5# 放大图片,使用立方插值
scaled_image = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC)  # INTER_CUBIC插值# 保存结果
cv2.imwrite('scaled_image-001-INTER_CUBIC m15.png', scaled_image)# 显示结果
cv2.imshow('Scaled Image15 ', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码运行后的输出效果为:

图4 图片放大1.5倍但没有任何裁切

由图4可见,图片放大了1.5倍,但没有任何裁切。

【3】第三种方法

在前序学习进程中,我们成功实现了对图像的倾斜拉伸,相关链接为:

pythonopencv|读取图像(二十九)使用cv2.getAffineTransform()函数倾斜拉伸图像-CSDN博客

文章中已经说明,倾斜拉伸是通过控制图像的顶点实现的。首次启发,我们把图像的顶点按照固定比例缩小和放大,这样就能实现图像的缩放。为此,展开代码测试。

这里使用的原始图像为:

图5

【3.1】缩小

首先给出完整代码:

python">import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
src = cv.imread('srcm.png')#设置点
rows=len(src) #读取图像行数
cols=len(src[0]) #读取图像列数
p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[0.8*(cols-1),0] #新的第二点
p2[2]=[0,0.8*(rows-1)] #新的第三点#center=(rows/2,cols/2) #旋转中心
#M=np.float32([[1,0,50],#[0,1,200]]) #M矩阵,x=50,y=200
M=cv.getAffineTransform(p1,p2)
#M=cv.getRotationMatrix2D(center,60,0.8) #旋转并缩放图像
dst=cv.warpAffine(src,M,(cols,rows)) #输出图像
cv.imshow('srcm-qxls', dst)  # 在屏幕展示绘制圆形的效果
cv.imwrite('srcm-qxls-8.png', dst)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

在这里,对新的点设置了0.8倍的缩小因子:

p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[0.8*(cols-1),0] #新的第二点
p2[2]=[0,0.8*(rows-1)] #新的第三点

代码运行后的输出效果为:

图6 缩小0.8倍

由图6可见,图像成功缩小为原来的0.8倍。

【3.2】放大

修改缩放因子,把图像放大1.5倍:

p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[1.5*(cols-1),0] #新的第二点
p2[2]=[0,1.5*(rows-1)] #新的第三点

此时,会惊喜地发现一个猫猫头:

图7 放大1.5倍

显然,cv2.getAffineTransform()函数在放大图像的时候,也会对图像进行裁切。

【4】效果对比

结合上面的使用效果,会发现:

使用cv2.getRotationMatrix2D()函数、cv2.resize()函数和cv2.getAffineTransform函数均可以实现图像缩放;

在图像缩小效果上,三个函数差不多,只是cv2.getRotationMatrix2D()函数和cv2.getAffineTransform函数会保留原本画布的大小,会看到一些纯色的背景;

在图像放大效果上,三个函数不一样,cv2.getRotationMatrix2D()函数和cv2.getAffineTransform函数会会裁切图像依然会保留原有画布的大小,图像超出画布大小的部分会被裁切,而cv2.resize()函数不会裁切图像,会等比例放大图像的所有部分。

图8 三种图像缩放效果对比

【5】总结

掌握了python+opencv实现图像缩放的三种方法。


http://www.ppmy.cn/ops/149464.html

相关文章

Jaeger UI使用、采集应用API排除特定路径

Jaeger使用 注: Jaeger服务端版本为:jaegertracing/all-in-one-1.6.0 OpenTracing版本为:0.33.0,最后一个版本,停留在May 06, 2019。最好升级到OpenTelemetry。 Jaeger客户端版本为:jaeger-client-1.3.2。…

国产编辑器EverEdit - 扩展脚本:在当前文件目录下新建同类型文件

1 扩展脚本:在当前文件目录下新建同类型文件 1.1 应用场景 用户在进行编程语言学习时,比如:Python,经常做完一个小练习后,又需要新建一个文件,在新建文件的时候,不但要选择文件类型&#xff0c…

请求方式(基于注解实现)

1.编写web.xml文件配置启动信息 <!DOCTYPE web-app PUBLIC"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN""http://java.sun.com/dtd/web-app_2_3.dtd" > <web-app><display-name>Archetype Created Web Application</di…

计算机网络——网络层-IP地址

一、IP 地址及其表示方法 • 我们把整个因特网看成为一个单一的、抽象的网络。IP 地址就是给每个连接在因特网上的主机&#xff08;或路由器&#xff09;分配一个在全世界范围是唯一的 32 位的标识符。 • IP 地址现在由因特网名字与号码指派公司ICANN (Internet Corporation f…

2025广州国际汽车内外饰技术展览会:引领汽车内外饰发展新潮流-Automotive Interiors

随着科技的不断进步和消费者对汽车品质的要求日益提高&#xff0c;汽车内外饰的设计和制造也在不断创新和发展。AUTO TECH China 2025广州国际汽车内外饰技术展览会作为行业内的重要盛会&#xff0c;将于2025年11月20日至22日在广州保利世贸博览馆盛大举办。本次展览会将汇集全…

系统架构设计师考点—信息安全和网络安全

一、备考指南 信息安全和网络安全主要考查的是信息安全属性、加密解密数字摘要、数字签名、PKI体系等相关知识&#xff0c;同时也是重点考点&#xff0c;在系统架构设计师的考试中一般会考选择题&#xff0c;占2~4分&#xff0c;在案例分析和论文中有时也会考到&#xff0c;属于…

深度学习|表示学习|一个神经元可以干什么|02

如是我闻&#xff1a; 如果我们只有一个神经元&#xff08;即一个单一的线性或非线性函数&#xff09;&#xff0c;仍然可以完成一些简单的任务。以下是一个神经元可以实现的功能和应用&#xff1a; 1. 实现简单的线性分类 输入&#xff1a;一组特征向量 x x x 输出&#xff…

记2(多元线性回归+二元线性回归可视化+三维数据可视化

目录 1、 “维度”&#xff1a;2、多元回归 1、 “维度”&#xff1a; n维向量&#xff1a;向量中元素的个数为n 多维数组&#xff1a;指的就是shape中的参数个数 xargmin f(x)的含义&#xff08;就是f(x)最小时&#xff0c;x等于多少&#xff09; 2、多元回归 回归分析中包…