【数据分析(一)】初探 Numpy

ops/2025/1/12 12:11:14/

目录

  • 前言
  • 1. 一维 array 的生成
  • 2. 一维 array 的基本操作
    • 2.1. 查看属性
    • 2.2. 花式索引
    • 2.3. 条件筛查
    • 2.4. 数据统计
  • 3. n 维 array 的生成
  • 4. n 维 array 的基本操作
    • 4.1. 查看属性
    • 4.2. 查询和切片
    • 4.3. 花式索引
    • 4.4. 矩阵

前言

  NumpyPython的常用开源数值计算扩展库,用于高效存储和处理大型矩阵。本文主要介绍Numpy数组array的操作及其相关函数的使用。

  以下对Numpy库函数的介绍中,已传入的参数为默认值,并且无返回值的函数不会以赋值形式演示。
  

1. 一维 array 的生成

  • array(p_object, dtype)引用一个列表元组,生成类型dtype的一维数组
  • arange(start, stop, step):生成相当于array(range(start, stop, step))整数序列
  • linspace(start, stop, num=50, endpoint=True, retstep=False, dtype='float64'):生成长度num类型dtype,在[start, stop]上的等差序列endpoint表示区间右端是否封闭retstep=True时则返回一个元组(array, step),即等差数列和步长
  • empty(shape, dtype='float64'):生成长度shape类型dtype,元素的全为空值的一维数组
  • zeros(shape, dtype='float64'):生成长度shape类型dtype,元素的全为0的一维数组
  • ones(shape, dtype='float64'):生成*长度shape类型dtype,元素的值**全为1的一维数组
  • fill(value):将value转换为原数组的数据类型后,把原数组的元素的全部填充value
  • random.rand(d):在区间[0, 1)生成随机浮点数,返回长度d的一维数组
  • random.randn(d):生成服从正态分布随机浮点数,返回长度d的一维数组
  • random.randint(low, high, size, dtype='int'):在区间[low, high)生成类型dtype随机数,返回长度size的一维数组
python">import numpy as np# 引用创建
l = [1, 2, 3, 4]
a = np.array(l, dtype='float')  # [1. 2. 3. 4.]# 整数序列
a = np.arange(1, 10, 2)         # [1 3 5 7 9]# 等差数列
a = np.linspace(1, 10, 4)       # [ 1.  4.  7. 10.]# 全0填充 
a = np.zeros(3, dtype='bool')   # [False False False]# 全1填充
a = np.ones(4, dtype='int')     # [1 1 1 1]# 任意值填充
a.fill(2.5)                     # [2 2 2 2]# 随机浮点数
a = np.random.rand(3)           # [0.39581995 0.13435102 0.31592101]# 随机正态分布值
a = np.random.randn(3)          # [ 1.62916156  0.44159883 -1.85375949]# 随机数
a = np.random.randint(1, 3, 5)  # [1 1 2 1 1]

  

2. 一维 array 的基本操作

2.1. 查看属性

python">import numpy as np
a = np.array([1, 2, 3, 4])# 查看类型:即元素的数据类型
print(a.dtype)              # int32# 查看维度
print(a.ndim)               # 1# 查看长度:即元素数目
print(a.size)               # 4# 查看尺寸:返回一个元组,值为对应维度的元素数目
print(a.shape)              # (4,)# 类型转换
# a = np.array(a, dtype='float64')
a = a.astype('float64')     # [1. 2. 3. 4.]

  

2.2. 花式索引

python">import numpy as np
a = np.arange(1, 20, 2)
'''[ 1  3  5  7  9 11 13 15 17 19]'''# 索引列表:获取对应索引的元素
print(a[[2, 2, -3, 6, -1]])
'''[ 5  5 15 13 19]'''# 布尔数组:和numpy数组长度相等,获取布尔值为True的对应位置上的元素
print(a[np.array([1, 1, 0, 1, 0, 1, 1, 0, 1, 0], dtype='bool')])
'''[ 1  3  7 11 13 17]'''

  

2.3. 条件筛查

python">import numpy as np
a = np.arange(1, 20, 2)
'''[ 1  3  5  7  9 11 13 15 17 19]'''# 对数组中的所有元素做条件判断,并在对应位置返回布尔值
print(a > 10)
'''[False False False False False  True  True  True  True  True]'''# 以元组形式,返回所有符合条件的元素的索引
print(np.where(a > 10))
'''(array([5, 6, 7, 8, 9], dtype=int64),)'''# 返回所有符合条件的元素的数组
print(a[a > 10])
print(a[np.where(a > 10)])
'''[11 13 15 17 19]'''

  

2.4. 数据统计

python">import numpy as np
a = np.array([-5, -2, 3, 1, 4])'''排列'''
# 正序排列
b = np.sort(a)      # [-5 -2  1  3  4]# 排列后的元素在原数组中的索引
b = np.argsort(a)   # [0 1 3 2 4]'''运算'''
# 应用于所有元素
b = a+1             # [-4 -1  4  2  5]# 应用于对应元素
b = b*a             # [20  2 12  2 20]# 绝对值
abs = np.abs(a)     # [5 2 3 1 4]# 指数
exp = np.exp(a)     # [6.73794700e-03 1.35335283e-01 2.00855369e+01 2.71828183e+00 5.45981500e+01]'''统计'''
# 求和
# s = a.sum()
s = np.sum(a)       # 1# 最小值
# m = a.min()
m = np.min(a)       # -5# 最大值
# M = a.max()
M = np.max(a)       # 4# 均值
# avg = a.mean()
avg = np.mean(a)    # 0.2# 中值
#
mid = np.median(a)  # 1.0# 累计和(前缀和)
cs = np.cumsum(a)   # [-5 -7 -4 -3  1]# 标准差
# std = a.std()
std = np.std(a)     # 3.3105890714493698

  

3. n 维 array 的生成

  • array(p_object, dtype)引用一个由 n个相同长度的列表元组 构成的元组,生成类型dtypen维数组
  • empty((*dn), dtype='float64'):生成尺寸(d0, d1, ..., dn)类型dtype,元素的全为空值n维数组
  • zeros((*dn), dtype='float64'):生成尺寸(d0, d1, ..., dn)类型dtype,元素的全为0n维数组
  • ones((*dn), dtype='float64'):生成尺寸(d0, d1, ..., dn)类型dtype,元素的全为1n维数组
  • fill(value):将value转换为原数组的数据类型后,把原数组的元素的全部填充value
  • random.rand(*dn):在区间[0, 1)生成随机浮点数,返回尺寸(d0, d1, ..., dn)n维数组
  • random.randn(*dn):生成服从正态分布随机浮点数,返回尺寸(d0, d1, ..., dn)n维数组
  • random.randint(low, high, (*dn), dtype='int'):在区间[low, high)生成类型dtype随机数,返回尺寸(d0, d1, ..., dn)n维数组
python">import numpy as np# 引用创建
a = np.array(([1, 2, 3, 4], (5, 6, 7, 8)))
'''
[[1 2 3 4][5 6 7 8]]
'''# 全0填充
a = np.zeros((2, 4))
'''
[[0. 0. 0. 0.][0. 0. 0. 0.]]
'''# 全1填充
a = np.ones((2, 4))
'''
[[1. 1. 1. 1.][1. 1. 1. 1.]]
'''# 任意值填充
a.fill(False)
'''
[[0. 0. 0. 0.][0. 0. 0. 0.]]
'''# 随机浮点数
a = np.random.rand(2, 2)
'''
[[0.11188812 0.83587679][0.98262527 0.79479766]]
'''# 随机正态分布值
a = np.random.randn(2, 2)
'''
[[-0.79453966 -1.5958028 ][ 0.89898492 -0.9779685 ]]
'''# 随机数
a = np.random.randint(1, 10, (2, 4))
'''
[[9 7 3 9][3 7 4 8]]
'''

  

4. n 维 array 的基本操作

  以二维数组为例。

4.1. 查看属性

python">import numpy as np
a = np.array(([1, 2, 3, 4], (5, 6, 7, 8)))
'''
[[1 2 3 4][5 6 7 8]]
'''# 查看类型
print(a.dtype)              # int32# 查看维度
print(a.ndim)               # 2# 查看数目
print(a.size)               # 8# 查看尺寸
print(a.shape)              # (2, 4)# 对数组所有元素进行运算
a = a+1
'''
[[2 3 4 5][6 7 8 9]]
'''# 两个数组的对应元素进行运算
a = a*(a-1)
'''
[[ 2  6 12 20][30 42 56 72]]
'''

  

4.2. 查询和切片

python">import numpy as np
a = np.array(([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
'''
[[ 1  2  3  4][ 5  6  7  8][ 9 10 11 12][13 14 15 16]]
'''
print(a)
# 单元查询:对于a[x, y],x是行索引,y是列索引
print(a[1, 0])              # 5# 单行查询
print(a[1])                 # [5 6 7 8]# 单列查询
print(a[:, 1])              # [ 2  6 10 14]# 连续区域切片
print(a[1:3, 1:3])
'''
[[ 6  7][10 11]]
'''# 离散区域切片
print(a[1::2, 1::2])
'''
[[ 6  8][14 16]]
'''# 不完全索引:只给出行索引范围时,默认对整行切片
print(a[:3])
'''
[[ 1  2  3  4][ 5  6  7  8][ 9 10 11 12]]
'''

  
  与列表不同的是,Numpy数组的切片是对原数组的引用,即它们共同指向一处内存空间,这意味元素的修改会同时作用到数组和它的切片上。可以用copy()方法进行拷贝,申请新的内存。

python">import numpy as npa = np.array([1, 2, 3, 4])
b = a[1: 3]
b[0] = '0'
print(a)    # [1 0 3 4]a = [1, 2, 3, 4]
b = a[1: 3]
b[0] = '0'
print(a)    # [1, 2, 3, 4]

  

4.3. 花式索引

  花式索引是对原数组的拷贝而非引用。

python">import numpy as np
a = np.array(([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
'''
[[ 1  2  3  4][ 5  6  7  8][ 9 10 11 12][13 14 15 16]]
'''# 索引列表
print(a[[0, 1, 2, 3], [0, 1, 2, 3]])
'''[ 1  6 11 16]'''# 布尔数组:需要指定列
mask = np.array([0, 1, 0, 1], dtype='bool')
print(a[mask])
'''
[[ 5  6  7  8][13 14 15 16]]
'''
print(a[mask, 1])   # [ 6 14]
print(a[1, mask])   # [6 8]# 配合切片使用花式索引
print(a[1: 3, [0, 3]])
'''
[[ 5  8][ 9 12]]
'''
'''

  

4.4. 矩阵

python">import numpy as np
x = np.array([1, 3, 2, 4, 6, 9])
y = np.array([13, 25, 37, 42, 54, 69])# 相关系数矩阵
cov = np.cov(x, y)
'''
[[  8.56666667  55.        ][ 55.         400.8       ]]
'''# 变形
x = x.reshape(2, 3)
'''
[[1 3 2][4 6 9]]
'''
y.shape = (2, 3)
print(y)                # 原矩阵发生改变
'''
[[13 25 37][42 54 69]]
'''# 转置
# x_T = x.T
x_T = x.transpose()     # 原矩阵不发生改变
'''
[[1 4][3 6][2 9]]
'''# 连接
'''沿行方向,即第一维(默认)'''
# z = np.vstack((x, y))
z = np.concatenate((x, y), axis=0)
'''
[[ 1  3  2][ 4  6  9][13 25 37][42 54 69]]
''''''沿列方向,即第二维'''
# z = np.hstack((x, y))
z = np.concatenate((x, y), axis=1)
'''
[[ 1  3  2 13 25 37][ 4  6  9 42 54 69]]
''''''沿垂直方向,即第三维'''
z = np.array((x, y))
print(z)
'''
[[[ 1  3  2][ 4  6  9]][[13 25 37][42 54 69]]]
'''
z = np.dstack((x, y))
'''
[[[ 1 13][ 3 25][ 2 37]][[ 4 42][ 6 54][ 9 69]]]
'''

http://www.ppmy.cn/ops/149443.html

相关文章

Docker Compose 教程

Docker Compose 是一个 Docker 容器的依赖管理工具。 例如我们一个服务需要依赖到多个 Docker 容器,那么使用 Docker Compose 这个工具就能很方便的帮助我们管理。 Docker Compose 通过配置文件 .yml。 定义了所有容器的依赖关系。 然后我们只需把我们想要的 Docke…

live555 俗称3个5 h264 rtp

class UsageEnvironment 这个类是顶层的容器,为万物之始。之后有啥new都带上它。 里面有个好宝贝TaskScheduler& fScheduler; f是field的意思,成员变量,与m_同。 class TaskScheduler 定义了 delayed task backgroudhadling even…

添加到 PATH 环境变量中

命令解释 # 将命令中的<CLI_PATH>替换为您aliyun文件的所在目录。 echo export PATH$PATH:<CLI_PATH> >> ~/.bash_profile echo export PATH$PATH:/data2/ljsang/aliyun/aliyun >> ~/.bash_profileexport PATH$PATH:/data2/ljsang/aliyun/aliyun&…

(Arxiv-2023)LORA-FA:针对大型语言模型微调的内存高效低秩自适应

LORA-FA&#xff1a;针对大型语言模型微调的内存高效低秩自适应 paper是香港浸会大学发表在Arxiv 2023的工作 paper title&#xff1a;LORA-FA: MEMORY-EFFICIENT LOW-RANK ADAPTATION FOR LARGE LANGUAGE MODELS FINE-TUNING ABSTRACT 低秩自适应 (LoRA) 方法可以大大减少微调…

Spring Boot教程之五十五:Spring Boot Kafka 消费者示例

Spring Boot Kafka 消费者示例 Spring Boot 是 Java 编程语言中最流行和使用最多的框架之一。它是一个基于微服务的框架&#xff0c;使用 Spring Boot 制作生产就绪的应用程序只需很少的时间。Spring Boot 可以轻松创建独立的、生产级的基于 Spring 的应用程序&#xff0c;您可…

Flutter项目开发模版,开箱即用(Plus版本)

前言 当前案例 Flutter SDK版本&#xff1a;3.22.2 本文&#xff0c;是由这两篇文章 结合产出&#xff0c;所以非常建议大家&#xff0c;先看完这两篇&#xff1a; Flutter项目开发模版&#xff1a; 主要内容&#xff1a;MVVM设计模式及内存泄漏处理&#xff0c;涉及Model、…

C++之开散列哈希表

目录 闭散列哈希表 元素的插入 元素的查找 元素的删除 上期我们学习了闭散列哈希表&#xff0c;闭散列哈希表和开散列哈希表的区别就是插入的元素在冲突时&#xff0c;应对冲突的处理方式不同&#xff0c;本期我们将详细的学习闭散列哈希表。 闭散列哈希表 闭散列哈希表图示…

C#语言的数据结构

C#语言的数据结构探讨 数据结构是计算机科学中一种用于组织、存储和管理数据的方式。有效地使用数据结构能使算法更加高效&#xff0c;并提高程序的性能。在C#语言中&#xff0c;我们可以构建和使用多种数据结构&#xff0c;以满足不同的需求。本文将介绍C#中的常用数据结构&a…