在多分类任务中,常用的损失函数能够衡量模型输出的类别分布与目标类别之间的差异,帮助模型学习更准确的分类能力。以下是多分类任务中常用的损失函数: 1. 交叉熵损失(Cross-Entropy Loss) 公式: CrossEntropyLoss = − 1 N ∑ i =