Gemma2 2B 模型的model.safetensors.index.json文件解析

ops/2025/1/2 10:46:28/

Gemma2 2B 模型的 model.safetensors.index.json 文件解析

在使用 Gemma2 2B 模型或其他大型预训练模型时,model.safetensors.index.json 文件起到了索引的作用,它帮助我们了解模型的结构、参数存储方式以及如何加载模型的具体权重。本博客将深入解析该文件的内容和用途。
下载到本地的文件如下所示:

在这里插入图片描述


1. 文件结构概述

model.safetensors.index.json 文件的主要结构包括两个关键部分:

  1. Metadata 元数据:包含模型的总大小信息。
  2. Weight Map 权重映射:定义模型参数与实际存储文件的对应关系。

示例内容如下:

{"metadata": {"total_size": 10457367552},"weight_map": {"model.embed_tokens.weight": "model-00001-of-00003.safetensors","model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors"}
}

2. Metadata 元数据解析

total_size

  • 作用:表示所有模型参数文件的总大小(以字节为单位)。
  • 示例10457367552 字节约等于 10.45 GB
  • 意义
    1. 帮助用户评估存储需求。
    2. 检查文件是否下载完整,与预期大小匹配。

3. Weight Map 权重映射解析

weight_map

  • 作用
    将模型的各层参数映射到具体的 .safetensors 文件。
  • 格式
    • 键:模型参数的名称,表示权重在模型中的位置。
    • 值:存储这些权重的 .safetensors 文件。
  • 示例解析
    • model.embed_tokens.weight: 嵌入层的权重存储在 model-00001-of-00003.safetensors 文件中。
    • model.layers.0.mlp.up_proj.weight: 第 0 层 MLP 的上投影矩阵参数位于 model-00001-of-00003.safetensors
    • model.layers.10.mlp.down_proj.weight: 第 10 层 MLP 的下投影矩阵参数位于 model-00002-of-00003.safetensors

用途

  1. 分布式存储:大型模型被拆分为多个小文件,方便管理和加载。
  2. 增量更新:支持部分更新,不必重写整个模型。
  3. 动态加载:根据需求按需加载模型的某些部分。

4. 模型分片机制

为什么需要分片?

  1. 存储限制:单个文件过大可能超出文件系统限制。
  2. 加载效率:分片可以按需加载,提高内存利用率。
  3. 分布式训练:多个 GPU 或节点可以并行处理不同的参数分片。

如何定位分片?

  • 文件命名规则:model-<编号>-of-<总数>.safetensors
    • model-00001-of-00003.safetensors 表示 3 个分片中的第 1 个。
  • 使用索引文件确保参数名和文件名一一对应。

5. Safetensors 格式简介

优势

  1. 安全性:防止恶意代码注入,保障权重文件的安全加载。
  2. 效率高:二进制存储格式,支持快速读取和写入。
  3. 跨平台兼容性:适用于 CPU 和 GPU 环境。

加载示例

from safetensors.torch import load_file# 加载特定分片
weights = load_file("model-00001-of-00003.safetensors")
print(weights.keys())

6. 实际应用场景

1. 模型加载过程

  1. 根据 model.safetensors.index.json 文件读取分片信息。
  2. 根据需要加载某些分片到 GPU,减少内存占用。
  3. 动态合并加载的参数,恢复完整模型结构。

2. 文件一致性检查

  • 利用 total_size 验证下载的文件总大小是否正确,确保数据完整性。

3. 参数微调

  • 用户可以根据需求只加载特定层权重进行微调,避免加载不必要的参数。

7. 总结

model.safetensors.index.json 文件是大型模型权重管理的重要工具,尤其适合 Gemma2 2B 这样的多层神经网络。通过解析该文件,可以了解模型的存储布局、参数分片策略以及如何高效加载和管理模型权重。

关键要点

  1. 元数据部分提供总大小信息,便于存储规划和完整性检查。
  2. 权重映射部分详细记录模型参数与存储文件的对应关系,支持灵活加载。
  3. Safetensors 格式提高了加载速度和安全性,适合大规模模型的分布式部署。

希望这篇博客能帮助您更好地理解 model.safetensors.index.json 文件的作用和实现原理,助力您的模型开发和部署工作!

后记

2024年12月30日13点45分于上海,在GPT4o大模型辅助下完成。

附录

下面是完整的Gemma2 2B 模型的model.safetensors.index.json文件:

{"metadata": {"total_size": 10457367552},"weight_map": {"model.embed_tokens.weight": "model-00001-of-00003.safetensors","model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors","model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors","model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors","model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors","model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors","model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors","model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors","model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors","model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors","model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors","model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors","model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors","model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors","model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors","model.norm.weight": "model-00003-of-00003.safetensors"}
}

仅供参考


http://www.ppmy.cn/ops/146399.html

相关文章

RSA公钥私钥对在线生成工具--可生成pem,xml,raw等密钥格式

支持生成pkcs8,pkcs1,xml,raw,openssh格式的公钥私钥对&#xff0c;如下图所示&#xff1a; 具体请访问:在线RSA公钥私钥对生成器--生成导出pkcs8/pkcs1 pem证书,raw,xml,openssh等格式,并可指定密钥长度

HTMLCSS:超炫丝滑的卡片水波纹效果

这段代码创建了一个卡片&#xff0c;卡片上有三个波动效果&#xff0c;这些波动效果通过 CSS 的keyframes 动画实现&#xff0c;创建了一个旋转的动画效果。这种效果适用于创建动态的视觉效果&#xff0c;例如音乐播放器的封面、动态背景或其他需要动态效果的界面元素。 演示效…

51.第二阶段x86游戏实战2-继续寻找lua

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要…

【C++】unordered系列关联式容器及其底层结构

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. unordered系列关联式容器1.1 unordered_map1.1.1 unordered_map的文档介绍1.1.2 unordered_map的接口说明 1.2 unordered_set 2. 底层结构2.1 哈希概念2.2 哈希冲突2.3 哈希冲突解决2.3.1 闭散列2.3.1.1 线性探测2…

基于 kubesphere + cube-studio搭建一站式云原生机器学习平台 国产纯中文 实操记录

1. cube studio 简介 cube studio开源云原生一站式机器学习/深度学习/大模型AI平台&#xff0c;支持sso登录&#xff0c;多租户&#xff0c;大数据平台对接&#xff0c;notebook在线开发&#xff0c;拖拉拽任务流pipeline编排&#xff0c;多机多卡分布式训练&#xff0c;超参搜…

超越BeautifulSoup:探索Python爬虫的替代解析库

在Python的网络爬虫世界中&#xff0c;BeautifulSoup以其易用性和强大的功能成为了解析HTML和XML文档的标杆。然而&#xff0c;随着技术的发展&#xff0c;出现了一些同样强大甚至在某些方面更胜一筹的替代库。本文将带你了解这些替代库&#xff0c;并提供实际的代码示例&#…

html转PDF

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 在项目中会有一些需要页面转成PDF的情况&#xff0c;这里需要配合一些插件可以完成 使用html2canvas将使用canvas将页面转为base64图片流&#xff0c;并插入jspdf插件中&#xff0c;保存并下载pdf。…

【Beats02】企业级日志分析系统ELK之Filebeat 收集日志及案例一

利用 Filebeat 收集日志 Filebeat 是用于转发和集中日志数据的轻量级传送程序。作为服务器上的代理安装&#xff0c;Filebeat监视您指定 的日志文件或位置&#xff0c;收集日志事件&#xff0c;并将它们转发到Elasticsearch或Logstash进行索引。 Logstash 也可以直接收集日志…