深度学习笔记1:神经网络与模型训练过程

ops/2025/1/1 19:07:09/

参考博客:PyTorch深度学习实战(1)——神经网络与模型训练过程详解_pytorch 实战-CSDN博客

人工神经网络

ANN:张量及数学运算的集合,排列方式近似于松散的人脑神经元排列

组成

1)输入层

2)隐藏层(中间层):连接输入层和输出层,在输入数据上执行转换,此外隐藏层利用神经元将输入值修改为更高、更低维的值,通过修改中间结点的激活函数可以实现复杂表示函数

3)输出层

训练

本质就是通过重复前向传播和后向传播两个关键步骤来调整神经网络的参数

前向传播--》输入经过隐藏层的到输出结果,第一次正向传播 权重初始化 计算预测值

后向传播--》根据误差相应调整权重来减小误差 修正参数

神经网络重复正向传播与反向传播以预测输出,指导获得令误差较小的权重为止

前向传播

1)输入值乘以权重计算隐藏层值

2)计算激活值

3)在每个神经元上重复前两个步骤,直到输出层

4)计算loss

封装为函数

def forward(inputs,outputs,weights):#如果是首次迭代,随机初始化pre_hidden = np.dot(inputs,weights[0]) + weights[1]#向量点积hidden = 1/(1+np.exp(-pre_hidden))#sigmoid激活函数pred_out = np.dot(hidden,weights[2]) + weights[3]#计算输出mse = np.mean(np.square(pred_out - outputs))#lossreturn mse

反向传播

与前向传播相反,利用从前向传播中计算的损失值,以最小化损失值为目标更新网络权重

1)每次对神经网络中的每个权重进行少量修改

2)测量权重变化时的损失变化 ---》损失值关于权重的梯度

3)计算-α δL/δW 更新权重 α为学习率

如果改变权重损失变化大那么就大幅更新权重

否则 小幅跟新权重

在整个数据集上执行n次前向传播以及后向传播,表示模型进行了n个epoch的训练 ,执行一次算一个epoch

学习率

有助于构建更稳定的算法

梯度下降

更新权重以减小误差值的整个过程

SGD是将误差最小化的一种方法:随计算则数据中的训练数据样本,并根据该样本做出决策

实现梯度下降算法

1)定义前馈神经网络并计算均方误差值

2)为每个权重和偏执项增加一个非常小的量0.001,并针对每个权重和偏差的更新计算一个mse

from copy import deepcopy 
import numpy as np
#创建update_weights函数,执行梯度下降来更新权重
def update_weights(inputs, outputs, weights, lr):#使用deepcopy可以确保处理多个权重副本,不会影响实际权重original_weights = deepcopy(weights)temp_weights  = deepcopy(weights)updated_weights = deepcopy(weights)original_loss = forward(inputs, outputs, original_weigts)#遍历网络的所有层for i, layer in enumerate(orignial_weights):#循环遍历每个参数列表的所有参数 共四个参数列表,前两个表示输入连接到隐藏层的权重和偏置项参数#另外两个表示链接隐藏层和输出层的偏置参数for index, weight in np.ndenumerate(layer):temp_weights = deepcopy(weights)#原始权重集temp_weights[i][index] += 0.0001#增加很小的值权重更新_loss_plus = forward(inputs, outputs, temp_weights)#更新损失grad = (_loss_plus - original_loss)/0.0001updated_weights[i][index] -= grad * lr #利用损失变化更新权重,使用学习率领权重变化更稳定return updated_weights, original_loss#返回更新后的权重

合并前向传播和反向传播

构建一个带有隐藏层的简单神经网络

1)输入连接到具有三个神经元的隐藏层

2)隐藏层连接到具有一个神经元的输出层

#导入相关库
import numpy as np
import matplotlib.pyplot as plt
from copy import deepcopy
x = np.array([[1,1]])
y = np.array(([[0]]))
#随机初始化权重和偏置值
W = [np.array([[-0.05, 0.3793],[-0.5820, -0.5204],[-0.2723, 0.1896]], dtype=np.float32).T, np.array([-0.0140, 0.5607, -0.0628], dtype=np.float32), #隐藏层两个偏置值np.array([[ 0.1528, -0.1745, -0.1135]], dtype=np.float32).T, np.array([-0.5516], dtype=np.float32)#输出层一个偏置值
]#在一百个epoch内执行前向传播和反向传播,使用之前定义的forward和
def forward(inputs,outputs,weights):#如果是首次迭代,随机初始化pre_hidden = np.dot(inputs,weights[0]) + weights[1]#向量点积hidden = 1/(1+np.exp(-pre_hidden))#sigmoid激活函数pred_out = np.dot(hidden,weights[2]) + weights[3]#计算输出mse = np.mean(np.square(pred_out - outputs))#lossreturn msedef update_weights(inputs, outputs, weights, lr):#使用deepcopy可以确保处理多个权重副本,不会影响实际权重original_weights = deepcopy(weights)temp_weights  = deepcopy(weights)updated_weights = deepcopy(weights)original_loss = forward(inputs, outputs, original_weights)#遍历网络的所有层for i, layer in enumerate(original_weights):#循环遍历每个参数列表的所有参数 共四个参数列表,前两个表示输入连接到隐藏层的权重和偏置项参数#另外两个表示链接隐藏层和输出层的偏置参数for index, weight in np.ndenumerate(layer):temp_weights = deepcopy(weights)#原始权重集temp_weights[i][index] += 0.0001#增加很小的值权重更新_loss_plus = forward(inputs, outputs, temp_weights)#更新损失grad = (_loss_plus - original_loss)/0.0001updated_weights[i][index] -= grad * lr #利用损失变化更新权重,使用学习率领权重变化更稳定return updated_weights, original_loss#返回更新后的权重#绘制损失值
losses = []
for  epoch in range(100):W, loss = update_weights(x, y, W, 0.01)losses.append(loss)
plt.plot(losses)
plt.title('loss over increasing number of  epochs')
plt.xlabel('epochs')
plt.ylabel('loss value')
plt.show()
print(W)
#获取更新后的权值之后通过将输出传递给网络对输入进行预测计算输出值
pre_hidden = np.dot(x, W[0]) + W[1]
hidden = 1/(1+np.exp(-pre_hidden))
pre_out = np.dot(hidden, W[2]) + W[3]
print(pre_out)

注:在服务器上运行时im.show()无法展示图片

总结

训练神经网络主要是通过重复两个关键步骤,及用给定的学习率进行前向传播和反向传播,最终得到最佳权重


http://www.ppmy.cn/ops/146068.html

相关文章

golang,多个proxy拉包的处理逻辑

在Go语言中,当你设置了多个代理(GOPROXY)时,Go工具链会按照你设置的顺序尝试每个代理。如果第一个代理失败,它会尝试下一个代理,直到成功获取到模块或者所有代理都尝试失败。最后,如果所有代理都…

【RabbitMQ高级篇】消息可靠性问题(1)

目录 1.消息可靠性 1.1.生产者消息确认 1.1.1.修改配置 1.1.2.定义Return回调 1.1.3.定义ConfirmCallback 1.2.消息持久化 1.2.1.交换机持久化 1.2.2.队列持久化 1.2.3.消息持久化 1.3.消费者消息确认 1.3.1.演示none模式 1.3.2.演示auto模式 1.4.消费失败重试机制…

Kafka消息不丢失与重复消费问题解决方案总结

1. 生产者层面 异步发送与回调处理 异步发送方式:生产者一般使用异步方式发送消息,异步发送有消息和回调接口两个参数。在回调接口的重写方法中,可通过异常参数判断消息发送状态。若消息发送成功,异常参数为null;若发…

windows系统下使用cd命令切换到D盘的方法

windows系统下使用cd命令切换到D盘的方法 系统环境配置 win10系统原装C盘后期自己安装的硬盘D盘 python3.8安装在D盘中 问题说明 winR打开终端,使用 cd d:命令,无法将当前目录切换到D盘 解决方法 方法一:使用下面这条命令 cd /d d:运…

python笔记随记

前言 笔记记录 内容 1.关键词条件: 代码块 2.总是只有一个if语句被执行,所有需要的elif语句在if语句之后,它们的先后顺序很重要,当前边的的if或elif已经执行则下边的elif则全部跳过,如果希望确保一个语句被执行则…

Pinpoint 是一个开源的分布式追踪系统

pinpointagent2.2.2.tar 是 Pinpoint 的一个版本,Pinpoint 是一个开源的分布式追踪系统,专门用于对 Java 应用程序进行性能监控、日志记录和故障诊断。它可以帮助开发人员和运维人员追踪和分析微服务架构中服务之间的调用链,并进行性能分析。…

Boost之log日志使用

不讲理论,直接上在程序中可用代码: 一、引入Boost模块 开发环境:Visual Studio 2017 Boost库版本:1.68.0 安装方式:Nuget 安装命令: #只安装下面几个即可 Install-package boost -version 1.68.0 Install…

C++ OpenCV中读取YAML文件的详解:定义、用途与实用示例

C OpenCV中读取YAML文件的详解:定义、用途与实用示例 在计算机视觉和图像处理领域,OpenCV(Open Source Computer Vision Library)是一个广泛使用的开源库。YAML(YAML Ain’t Markup Language)作为一种简洁…