UDP传输层通信协议详解

ops/2024/12/26 19:49:56/

引言

在计算机网络通信的广阔天地中,传输层协议扮演着至关重要的角色。它们负责在网络中的两个终端之间建立、管理和终止数据传输。在众多传输层协议中,UDP(User Datagram Protocol,用户数据报协议)以其独特的特性和应用场景脱颖而出。UDP传输层通信协议详解,将为我们揭示这一协议的工作原理、优缺点以及在现代网络通信中的重要作用。

以下是本文需要的几个基础知识。

传输层--负责数据能够从发送端传输接收端。
端口号---端口号 (Port) 标识了一个主机上进行通信的不同的应用程序 ;
TCP/IP 协议中 , " IP", " 源端口号 ", " 目的 IP", " 目的端口号 ", " 协议号 " 这样一个五元组来标识一个通信 (可以通过 netstat -n 查看 );
端口号范围划分--uint16_t
0 - 1023: 知名端口号, HTTP, FTP, SSH等这些广为使用的应用层协议, 他们的端口号都是固定的.
1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的.
认识知名端口号 (Well-Know Port Number)
有些服务器是非常常用的 , 为了使用方便 , 人们约定一些常用的服务器 , 都是用以下这些固定的端口号(我们自己写一个程序使用端口号时 , 要避开这些知名端口号 .):
ssh 服务器 , 使用 22 端口
ftp 服务器 , 使用 21 端口
telnet 服务器 , 使用 23 端口
http 服务器 , 使用 80 端口
https 服务器 , 使用 443
执行下面的命令 , 可以看到知名端口号
cat /etc/services
两个问题
1. 一个进程是否可以 bind 多个端口号 ?--Y
2. 一个端口号是否可以被多个进程 bind?---N
netstat
netstat 是一个用来查看网络状态的重要工具
语法 netstat [ 选项 ]
功能 :查看网络状态
常用选项
n 拒绝显示别名,能显示数字的全部转化成数字
l 仅列出有在 Listen (监听) 的服務状态
p 显示建立相关链接的程序名
t (tcp)仅显示tcp相关选项
u (udp)仅显示udp相关选项
a (all)显示所有选项,默认不显示LISTEN相关
pidof
在查看服务器的进程 id 时非常方便 .
语法 pidof [ 进程名 ]
功能 :通过进程名 , 查看进程 id

UDP协议

0-31表示宽度,第一行的数据就是位段前两个数据,分别占用了16位

可以看到UDP的报头与格式还是比较简单的,符合了UDP效率高,不可靠的特性。

UDP的报头一共8字节,8*8 = 64bite,所以内部采用了位段(比特位)的方式梳理结构。包含了源端口号与目的端口号的信息(uint16_t)

16位UDP长度, 表示整个数据报(UDP首部+UDP数据)的最大长度(单位是1字节);
校验和: 如果校验和出错, 就会直接丢弃

校验和解读

UDP(用户数据报协议)中的16位校验和是一个重要的错误检测机制,它用于验证数据在传输过程中的完整性。以下是关于UDP 16位校验和的详细介绍:

### 工作原理
1. **计算校验和**:发送方在发送数据之前, 会计算整个UDP数据报的校验和。这个计算包括 UDP头部、UDP数据以及一个伪头部(pseudo-header)伪头部包含了源IP地址、目的IP地址、保留位(置为0)、协议号(对于UDP来说是17)和UDP数据报的长度

2. **伪头部的使用**:伪头部 并不真正存在于UDP数据报中,它仅在计算校验和时被使用。伪头部的目的是为了 确保数据报在传输过程中能够正确地到达目的地,即使它们在传输过程中可能会经过不同的网络路径。
3. **校验和的计算方法**:校验和的计算是通过将所有16位字(包括伪头部、UDP头部和数据)相加,并取反来完成的。如果相加的结果有进位,进位会被加回到最低位上。最终得到的16位值就是校验和。
### 校验和的验证
1. **接收方验证**:接收方在收到UDP数据报后, 会重新计算整个数据报(包括伪头部)的校验和,并与数据报中携带的校验和进行比较
2. **错误检测**:如果接收方计算出的校验和与数据报中的校验和不匹配,那么接收方可以认为数据在传输过程中发生了错误。在这种情况下, UDP通常会丢弃这个数据报,并且不会通知发送方
### 特点
- **简单性**:校验和的计算相对简单,不需要复杂的算法。
- **有限性**:1 6位的校验和只能检测出一定范围内的错误,它不是绝对可靠的。例如,它不能保证检测出所有类型的错误,也不能纠正错误。
- **无连接性**:由于 UDP是无连接的,校验和是UDP提供的一种基本错误检测手段,但它不保证数据的可靠传输
### 注意事项
- 如果发送方或接收方在 计算校验和时发现错误UDP协议本身不会尝试重传数据报这是与TCP协议的一个重要区别
- 在某些特殊情况下 ,发送方可以选择不计算校验和,并将校验和字段置为0。这通常用于 性能敏感的应用,但这样做会降低错误检测的能力。

UDP的特点

UDP传输的过程类似于寄信.
无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接;
不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层返回任何错误信息;
面向数据报: 不能够灵活的控制读写数据的次数和数量(不存在发送缓冲区)

面向数据报

应用层交给UDP多长的报文, UDP原样发送, 既不会拆分, 也不会合并;
用UDP传输100个字节的数据:
如果发送端调用一次sendto, 发送100个字节, 那么接收端也必须调用对应的一次recvfrom, 接收100个字节; 而不能循环调用10次recvfrom, 每次接收10个字节;
UDP 的缓冲区与全双工
UDP没有真正意义上的 发送缓冲区. 调用sendto会直接交给内核, 由内核将数据传给网络协议进行后续的传输动作;
UDP具有接收缓冲区. 但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;
如果缓冲区满了, 再到达的UDP数据就会被丢弃;
UDP socket 既能读 , 也能写 , 这个概念叫做 全双工

UDP使用注意事项

我们注意到 , UDP 协议首部中有一个 16位的最大长度 . 也就是说一个 UDP 能传输的数据最大长度是 64K( 包含 UDP首部 ).
然而 64K 在当今的互联网环境下 , 是一个非常小的数字 .
如果我们需要传输的数据超过64K, 就需要在应用层手动的分包多次发送, 并在接收端手动拼装;
2^10*2^6  /  1024(字节) = 64KB

基于UDP的应用层协议

NFS: 网络文件系统
TFTP: 简单文件传输协议
DHCP: 动态主机配置协议
BOOTP: 启动协议 ( 用于无盘设备启动 )
DNS: 域名解析协议
当然 , 也包括你自己写 UDP 程序时自定义的应用层协议

DNS

DNS(Domain Name System,域名系统)是一种用于将域名和IP地址相互转换的分布式数据库和协议。DNS的主要目的是便于人们使用易于记忆的域名来访问互联网上的资源,而不需要记住复杂的IP地址。以下是DNS协议的简介:

### 功能:

- **域名解析**:将人类可读的域名(如 www.example.com)转换为机器可读的IP地址(如 192.0.2.1)。

- **反向解析**:将IP地址转换为对应的域名(主要用于某些网络管理和安全功能)。

- **域名服务**:提供域名注册、更新和删除等服务。

### 工作原理:

1. **递归查询**:

   - 用户在浏览器中输入域名,计算机会向本地DNS服务器发送解析请求。

   - 如果本地DNS服务器没有缓存该域名的记录,它会作为递归解析器,向其他DNS服务器发送查询请求,直到找到解析结果。

2. **迭代查询**:

   - DNS服务器之间通常使用迭代查询。当一个DNS服务器收到查询请求时,如果它没有所需的信息,它会返回另一个DNS服务器的地址,让请求者向该服务器发送新的查询。

3. **DNS记录**:

   - DNS记录存储在DNS服务器上,它们包含有关域名的各种信息,如A记录(域名到IPv4地址的映射)、AAAA记录(域名到IPv6地址的映射)、MX记录(邮件交换记录)、CNAME记录(别名记录)等。

### DNS服务器类型:

- **根域名服务器**:顶级域名(如.com、.net、.org)的DNS服务器。

- **顶级域名服务器**(TLD):管理特定顶级域名的DNS服务器。

- **权威域名服务器**:管理特定域名的DNS服务器。

- **本地DNS服务器**:通常由互联网服务提供商(ISP)或组织提供,为用户提供本地解析服务。

### 安全性:

- DNS存在一些安全风险,如DNS劫持、缓存投毒等。

- 为提高安全性,可以使用DNSSEC(DNS安全扩展)来验证DNS响应的真实性和完整性。

DNS是互联网基础设施的重要组成部分,它使得用户能够通过简单的域名来访问互联网上的各种资源。


http://www.ppmy.cn/ops/145194.html

相关文章

(附源码)基于springboot的酒店餐饮预定管理系统 用户前台管理后台 P10062

项目说明 本号所发布的项目均由我部署运行验证,可保证项目系统正常运行,以及提供完整源码。 如需要远程部署/定制/讲解系统,可以联系我。定制项目未经同意不会上传! 项目源码获取方式放在文章末尾处 注:项目仅供学…

sqli-labs关卡记录12

和11关一样,本关卡依旧是post型,判断方式这里不再描述,接着就是判断是数字型还是字符型,很明显是字符型,因为输入1,和1dhqihioq得到的都是一样的,然后就是判断闭合方式,这里先试了试…

STM32和精准的型号STM32F03C8T6 ——ADC通道数目区别

注意表达方式的区别 5.STM32芯片内部集成的(12)位ADC是一种逐次逼近型模拟数字转换器,具 有(18)个通道,可测量(16)个外部和(2)个内部信号源。 书上原话:STM32…

GitLab的卸载与重装

目录 一、GitLab的卸载 二、 GitLab的安装与配置 1. 创建安装目录 2. 安装 3. 使用 3.1 初始化 3.2 创建空白项目 ​编辑 3.3 配置SSH 3.3.1 配置公钥 ​编辑 3.3.2 配置私钥 3.4 配置本地git库 一、GitLab的卸载 1. 停止gitlab sudo gitlab-ctl stop 2. 卸载…

【NIFI】实现HANA->ORACLE数据同步

【NIFI】实现HANA->ORACLE数据同步 需求 实现 HANA->ORACLE数据同步 HANA表名(视图):"_SYS_BIC"."ZUNIS/CAL_ZFI019_DETAIL"ORACLE表明:CAL_ZFI019_DETAIL 配置如下 1、QueryDatabaseTable&#xff1a…

算法学习(17)—— FloodFill算法

目录 关于FloodFill算法 部分OJ题详解 733. 图像渲染 200. 岛屿数量 695. 岛屿的最大面积 130. 被围绕的区域 417. 太平洋大西洋水流问题 529. 扫雷问题 LCR130. 衣橱整理 关于FloodFill算法 爆搜,深搜,回溯的算法原理并不难,这类题…

vue调试工具 Vue.jsDevtools

文件下载 Vue.js Devtools 通过网盘分享的文件:ddebf336f8a44293bd4db9d0f287bc1c.crx 链接: https://pan.baidu.com/s/1uS3a49CwW-B000p5GwUQmQ 提取码: ko89 下载完了 ,拖入chrome里,打开详情配置. 打开红框中的开关 重启浏览器&#xff…

React Native 集成 iOS 原生功能

React Native 集成 iOS 原生功能完整指南 前言 在 React Native 项目中集成 iOS 原生功能是一个常见需求。本文将同样以打印机功能为例,详细介绍如何在 React Native 项目中集成 iOS 原生功能。 集成步骤概述 创建原生模块(Native Module&#xff09…