[OpenGL]使用TransformFeedback实现粒子效果

ops/2024/12/26 10:38:59/

一、简介

本文介绍了如何使用 OpenGL 中的 Transform Feedback 实现粒子效果,最终可以实现下图的效果:
在这里插入图片描述
本文的粒子系统实现参考了modern-opengl-tutorial, ogldev-tutorial28 和 粒子系统–喷泉 [OpenGL-Transformfeedback]。

二、使用 TransformFeedback 实现效果

1. Transform Feedback 简介

Transform Feedback 是 OpenGL 中用于获取 vertex shader 和 geometry shader 处理后的顶点数据的一种机制,可以在 GPU 上将 vertex shader, geometry shader 处理后的数据存储到以一个 buffer 中,而不进行接下来的 clipper, Rasterizer 和 Fragment Shader 阶段。
Transform Feedback Buffer 在渲染管线中所处的位置如下图所示:
在这里插入图片描述

基于 Transform feedback,我们可以在 GPU 上对多个顶点数据行进并行运算,粒子系统 就是 Transform feedback 的一个典型应用。

2. 粒子系统实现

在实现粒子系统时,使用 update Shader 和 render Shader 两个 着色器:

  • update shader 用来更新粒子的状态,包括更新粒子状态、生成新粒子、消灭旧粒子。
  • render shader 用来将粒子显示在屏幕上。

粒子系统的实现流程如下:
流程
上图展示了使用 Update shader 和 Render shader 实现粒子系统的流程。图中左侧黄色虚线内为使用 Update shader 更新粒子,右侧蓝色虚线内为使用 Render shader 将粒子渲染到屏幕上,然后再进入下一帧的Update-Render流程。
在 Update shader 中,输入为 Update input VBO,输出为 Update output VBO。在 Render shader 中,Update output VBO 又作为渲染时的输入,Render input VBO。由于 Transform Feedback 中的在读 一个 VBO 时,不能同时写该 VBO ,及Update input VBOUpdate output VBO 不能是同一个 buffer object。因此在代码实现使用两个 VBO 交替作为 一个Update-Render流程中的Update input VBO Update output VBO
例如,渲染一个n帧的结果,其 Update input VBOUpdate output VBO 所代表的 buffer 变换如下所示:
在这里插入图片描述

3. 部分代码讲解

3.1. Particle 类

struct Particle
{float Type; // 0: launch, 1: shell, 2 : second shellglm::vec3 Pos;glm::vec3 Velocity;float Life;
};

系统中粒子的类型分为三类, launch, shell 和 second shell。

  • launch 类粒子相当于一个发射器,其位置、速度一直保持不变,在 Life 到达一定的数值时生成 shell 类粒子;
  • shell 类粒子由 launch 类粒子生成后,获得一个初始的速度,假设只受到重力,根据牛顿第二定律更新自己的 速度、位置。并且 shell 粒子的 Life 在到达一定数值时生成 second shell 类粒子;
  • second shell 类粒子初始时于生成该粒子的父粒子具有相同的位置,但是速度不同。 second shell 粒子的 Life 到达一定数值后死亡。

3.2. PaticleSystem 类

a. PaticleSystem类的变量

class ParticleSystem
{
public:
...
private:bool m_isFirst; // 标记 是否时第一次调用 Render()GLuint m_VAO[2];                // 两个 VAO 分别用于 update 和 render 的输入unsigned int m_update_input_id; // update input id,unsigned int m_render_input_id; // render input id, update output idGLuint m_VBO_TFB[2]; // 两个顶点缓冲区 , 交替作为 update / render bufferGLuint m_TFO[2];     // 两个 transform feedback 对象 TFOShader m_updateShader;     // particle update shaderShader m_renderShader;     // particle render shaderTexture m_randomTexture;   // 随机数纹理Texture m_particleTexture; // 粒子的纹理float m_time;              // 系统运行的总时间...
}

b. InitParticleSystem() 初始化 ParticleSystem

class ParticleSystem
{public:...bool InitParticleSystem(const glm::vec3 &Pos){// 1. 生成 初始粒子Particle Particles[MAX_PARTICLES];Particles[0].Type = 0;Particles[0].Pos = Pos;Particles[0].Velocity = glm::vec3(0.0f, 0.01f, 0.0f);Particles[0].Life = 0.0f;// 2. 初始化  VAO, TFO, VBOglGenVertexArrays(2, m_VAO);       // 生成 两个 VAOglGenTransformFeedbacks(2, m_TFO); // 生成 两个 TFOglGenBuffers(2, m_VBO_TFB);        // 生成 两个 buffer (TFB), 分别绑定到 对应的 VAO 和 TFO 上for (unsigned int i = 0; i < 2; i++){// VAO[i] <- VBO[i]// TFO[i] <- VBO[i]glBindVertexArray(m_VAO[i]);glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, m_TFO[i]);glBindBuffer(GL_ARRAY_BUFFER, m_VBO_TFB[i]);glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_VBO_TFB[i]);glBufferData(GL_TRANSFORM_FEEDBACK_BUFFER, sizeof(Particles), Particles, GL_DYNAMIC_DRAW);glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_VBO_TFB[i]);}// 3. 初始化 update shader, render shader// update shaderconst char *feedbackVaryings[] = {"Type1", "Position1", "Velocity1", "Age1"};m_updateShader = Shader("../resources/particleUpdate.vert", "../resources/particleUpdate.frag","../resources/particleUpdate.geom", feedbackVaryings);m_updateShader.use();m_updateShader.setFloat("gLauncherLifetime", 100.0f);m_updateShader.setFloat("gShellLifetime", 10000.0f);m_updateShader.setFloat("gSecondaryShellLifetime", 500.f);// 初始化 render shaderm_renderShader = Shader("../resources/particleRender.vert", "../resources/particleRender.frag","../resources/particleRender.geom");m_renderShader.use();m_renderShader.setFloat("gBillboardSize", 0.01f);// 4. 初始化 纹理// 随机数纹理m_randomTexture.id = TextureFromRand();m_randomTexture.path = "random";m_randomTexture.type = "texture_diffuse";// 粒子纹理m_particleTexture.id = TextureFromFile("particle.png", "../resources/textures/");m_particleTexture.path = "../resources/textures/particle.png";m_particleTexture.type = "texture_diffuse";return true;};...
}

c. Render() 调用 update shader 和 Render shader 进行更新粒子、渲染粒子

class ParticleSystem
{
public:
...void Render(float DeltaTimeMillis, const glm::mat4 &VP, const glm::vec3 &CameraPos){m_time += DeltaTimeMillis;// 更新 粒子updateParticles(DeltaTimeMillis);// 渲染 粒子renderParticles(VP, CameraPos);// 交换 update shader 使用的 VAO 和 TFO// 0 -> 1 -> 0 -> 1 -> 0 -> ...m_update_input_id = (m_update_input_id + 1) % 2;// 交换 render shader 使用的 VAO// 1 -> 0 -> 1 -> 0 -> 1 -> ...m_render_input_id = (m_render_input_id + 1) % 2;};...
}

d. updateParticles() 更新粒子

class ParticleSystem
{
public:
...void updateParticles(float DelatTimeMillis){// 1. 设置 update shader 中的 uniform 变量以及纹理变量m_updateShader.use();m_updateShader.setFloat("gTime", m_time);m_updateShader.setFloat("gDeltaTimeMillis", 1.0f * DelatTimeMillis);glActiveTexture(GL_TEXTURE0); // 激活纹理单元 0glUniform1i(glGetUniformLocation(m_updateShader.ID, "gRandomTexture"),0); // 将纹理单元0 与着色器的 sampler 变量 gRandomTexture 关联glBindTexture(GL_TEXTURE_1D, m_randomTexture.id); // 将 纹理对象 绑定到当前的纹理单元 GL_SAMPLER_1D 纹理上// 2. 绑定 VAO, TFB// 绑定VAO, 作为 update shader 的输入glBindVertexArray(m_VAO[m_update_input_id]);// 根据 update shader 设置 VAO 中不同属性的读取方式glVertexAttribPointer(0, 1, GL_FLOAT, GL_FALSE, sizeof(Particle), 0);                               // typeglVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Particle), (const GLvoid *)(sizeof(float))); // positionglVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof(Particle),(const GLvoid *)(sizeof(float) + sizeof(glm::vec3))); // velocityglVertexAttribPointer(3, 1, GL_FLOAT, GL_FALSE, sizeof(Particle),(const GLvoid *)((sizeof(float) + sizeof(glm::vec3)) + sizeof(glm::vec3))); // lifetimeglEnableVertexAttribArray(0);glEnableVertexAttribArray(1);glEnableVertexAttribArray(2);glEnableVertexAttribArray(3);// 绑定 TFO, 作为 update shader 的输出glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, m_TFO[m_render_input_id]);// 3. 开始使用 update shader 更新粒子glEnable(GL_RASTERIZER_DISCARD); // 跳过光栅化以及之后的阶段glBeginTransformFeedback(GL_POINTS);if (m_isFirst){ // 第一次 运行 update shader, 只有一个 粒子glDrawArrays(GL_POINTS, 0, 1);m_isFirst = false;}else{ // 之后运行 update shader, 粒子个数不确定, 由 opengl 根据 transform feedback object 自行确定粒子个数glDrawTransformFeedback(GL_POINTS, m_TFO[m_update_input_id]);}glEndTransformFeedback();glDisable(GL_RASTERIZER_DISCARD); // 开启光栅化以及之后的阶段glDisableVertexAttribArray(0);glDisableVertexAttribArray(1);glDisableVertexAttribArray(2);glDisableVertexAttribArray(3);};...
}

e. renderParticles()渲染粒子

class ParticleSystem
{
public:
...void renderParticles(const glm::mat4 &VP, const glm::vec3 &CameraPos){// 1. 设置渲染状态glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT); // 使用 (0.2,0.3,0.3,1.0) 清空 color texture, 清空 depth bufferglEnable(GL_BLEND);           // 启用 blendglBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // blend 模式为 D = alpha*S + (1-alpha)*DglEnable(GL_PROGRAM_POINT_SIZE);// 2. 设置 render shader 中的 uniform 变量以及纹理变量m_renderShader.use();m_renderShader.setVec3("gCameraPos", CameraPos);m_renderShader.setMat4("gVP", VP);glActiveTexture(GL_TEXTURE1); // 激活纹理单元 1glUniform1i(glGetUniformLocation(m_renderShader.ID, "gColorMap"), 1);glBindTexture(GL_TEXTURE_2D, m_particleTexture.id); // 将 纹理对象 绑定到当前的纹理单元的 GL_SAMPLER_1D 纹理上// 3. 绑定 VAO// 绑定VAO, 作为 render shader 的输入glBindVertexArray(m_VAO[m_render_input_id]);// 根据 render shader 设置 VAO 中不同属性的读取方式glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Particle), (void *)(sizeof(float))); // positionglEnableVertexAttribArray(0);// 4. 开始使用 render shader 渲染粒子glDisable(GL_RASTERIZER_DISCARD); // 开启 光栅化 以及之后的阶段glDrawTransformFeedback(GL_POINTS, m_TFO[m_render_input_id]);};...
}

3.3. Update shader

a. Vertex shader

#version 410layout(location = 0) in float Type;
layout(location = 1) in vec3 Position;
layout(location = 2) in vec3 Velocity;
layout(location = 3) in float Age;out float Type0;
out vec3 Position0;
out vec3 Velocity0;
out float Age0;void main() {Type0 = Type;Position0 = Position;Velocity0 = Velocity;Age0 = Age;
}

b. Geometer shader

#version 410layout(points) in;
layout(points, max_vertices = 30) out;/* 从 vertex shader 输入的 point 的属性 */
in float Type0[];
in vec3 Position0[];
in vec3 Velocity0[];
in float Age0[];/* 输出到 fragment shader 的 point 的属性*/
out float Type1;
out vec3 Position1;
out vec3 Velocity1;
out float Age1;/* 用于更新 particle 的变量 */
uniform float gDeltaTimeMillis;        // 时间间隔
uniform float gTime;                   // 当前时刻
uniform sampler1D gRandomTexture;      // 随机纹理
uniform float gLauncherLifetime;       // Launcher 的生存时间
uniform float gShellLifetime;          // Shell 的生存时间
uniform float gSecondaryShellLifetime; // Secondary Shell 的生存时间#define PARTICLE_TYPE_LAUNCHER 0.0f
#define PARTICLE_TYPE_SHELL 1.0f
#define PARTICLE_TYPE_SECONDARY_SHELL 2.0f// 使用 random texture 获取一个随机值 (random texture相当于一个随机数池)
vec3 GetRandomDir(float TexCoord) {vec3 Dir = texture(gRandomTexture, TexCoord).xyz;Dir -= vec3(0.5, 0.5, 0.5);return Dir;
}void main() {// 更新 particle 的生存时间float Age = Age0[0] + gDeltaTimeMillis;// 增加随机性float g_Time = (sin(gTime) + 1.0) / 2.0 * 1000.0;g_Time = gTime;// Launcher particleif (Type0[0] == PARTICLE_TYPE_LAUNCHER) {// 如果 particle 生存时间过长// 那么就生成一个 Shell particle, 并且更新 Launcher particleif (Age >= gLauncherLifetime) {// 生成 一个 Shell particleType1 = PARTICLE_TYPE_SHELL;// 初始化 position, dir, velocity, agePosition1 = Position0[0];vec3 Dir = GetRandomDir(g_Time / 1000.0);Dir.y = max(Dir.y, 0.95);Velocity1 = normalize(Dir) / 12.0;// Velocity1 = Velocity0[0];Age1 = 0.0;// emit vertexEmitVertex();EndPrimitive();Age = 0.0;}// 更新 Launcher particleType1 = PARTICLE_TYPE_LAUNCHER;Position1 = Position0[0];Velocity1 = Velocity0[0];Age1 = Age;EmitVertex();EndPrimitive();} else {// 如果是 Shell or Second Shell particlefloat DeltaTimeSecs = gDeltaTimeMillis / 1000.0;float t1 = Age0[0] / 1000.0;float t2 = Age / 1000.0;// position 的改变量vec3 DeltaP = DeltaTimeSecs * Velocity0[0];// velocity 的改变量// vec3 DeltaV = vec3(DeltaTimeSecs) * vec3(0.0, -9.81, 0.0);// 如果是 Shell particlevec3 DeltaV = vec3(0, DeltaTimeSecs / 1000.0 * -9.81, 0);if (Type0[0] == PARTICLE_TYPE_SHELL) {if (Age < gShellLifetime) {// 如果 Shell particle 还在生存时间内Type1 = PARTICLE_TYPE_SHELL;// 更新 position, velocityPosition1 = Position0[0] + DeltaP;Velocity1 = Velocity0[0] + DeltaV;// Velocity1 = Velocity0[0];// Velocity1 = Velocity0[0] + vec3(0.0, DeltaTimeSecs * -9.8, 0.0);Age1 = Age;EmitVertex();EndPrimitive();} else {// 如果 Shell particle 超过生存时间了,那么就 分裂为 10 个 Second Shellfor (int i = 0; i < 10; i++) {Type1 = PARTICLE_TYPE_SECONDARY_SHELL;Position1 = Position0[0];vec3 Dir = GetRandomDir((g_Time + i) / 1000.0);Velocity1 = normalize(Dir) / 20.0;Age1 = 0.0f;EmitVertex();EndPrimitive();}}} else {// 如果是 Second Shell particleif (Age < gSecondaryShellLifetime) {// 如果 Second Shell 还在生存周期内Type1 = PARTICLE_TYPE_SECONDARY_SHELL;Position1 = Position0[0] + DeltaP;Velocity1 = Velocity0[0] + DeltaV;Age1 = Age;EmitVertex();EndPrimitive();}// 如果 Second Shell 超过生存周期, 那么就消灭该 Second Shell particle// (什么也不做)}}
}

c. Fragment shader

#version 410 core
void main() {// do nothing
}

3.4. Render shader

a. Vertex shader

#version 410
layout(location = 0) in vec3 Position;
void main() { gl_Position = vec4(Position, 1.0); }

b. Geometer shader

#version 410layout(points) in;
layout(triangle_strip, max_vertices = 4) out;
uniform mat4 gVP;
uniform vec3 gCameraPos;
uniform float gBillboardSize;out vec2 TexCoord;void main() {// 以 p0 = gl_Position 为右下角,绘制一个矩形 (两个三角形)// p2 --- p4// |  \   |// |    \ |// p1 --- p3 (p0)vec3 Pos = gl_in[0].gl_Position.xyz;vec3 toCamera = normalize(gCameraPos - Pos);vec3 up = vec3(0.0, 1.0, 0.0);vec3 right = cross(toCamera, up) * gBillboardSize;// p1Pos -= right;gl_Position = gVP * vec4(Pos, 1.0);TexCoord = vec2(0.0, 0.0);EmitVertex();// p2Pos.y += gBillboardSize;gl_Position = gVP * vec4(Pos, 1.0);TexCoord = vec2(0.0, 1.0);EmitVertex();// p3Pos.y -= gBillboardSize;Pos += right;gl_Position = gVP * vec4(Pos, 1.0);TexCoord = vec2(1.0, 0.0);EmitVertex();// p4Pos.y += gBillboardSize;gl_Position = gVP * vec4(Pos, 1.0);TexCoord = vec2(1.0, 1.0);EmitVertex();EndPrimitive();
}

c. Fragment shader

#version 410uniform sampler2D gColorMap;
in vec2 TexCoord;
out vec4 FragColor;
void main() {FragColor = texture(gColorMap, TexCoord);if (FragColor.r >= 0.9 && FragColor.g >= 0.9 && FragColor.b >= 0.9) {discard;}
}

4. 全部代码及模型文件

用于实现粒子效果的全部代码以及模型文件可以在OpenGL使用TransformFeedback实现粒子效果 中下载。

三、参考引用

[1]. modern-opengl-tutorial
[2]. ogldev-tutorial28
[3]. 粒子系统–喷泉 [OpenGL-Transformfeedback]


http://www.ppmy.cn/ops/145103.html

相关文章

浏览器http缓存问题

一、什么是浏览器缓存 浏览器将请求过的资源&#xff08;html、js、css、img&#xff09;等&#xff0c;根据缓存机制&#xff0c;拷贝一份副本存储在浏览器的内存或者磁盘上。如果下一次请求的url相同时则根据缓存机制决定是读取内存或者磁盘上的数据还是去服务器请求资源文件…

【汇编】关于函数调用过程的若干问题

1. 为什么需要bp指针&#xff1f; 因为bp是栈帧的起始地址&#xff0c;函数内的局部栈变量&#xff0c;采用相对bp的内存寻址。不能相对于sp&#xff0c;sp是一直在变的。 2. 函数调用过程&#xff1f; 函数开始&#xff0c;先压栈bp&#xff0c;保存父函数栈底指针bp&#…

[Router]路由器常用的后台判断网络ping 可靠公共 IP 地址整理

接受ICMP公共DNS地址 接受 ICMP 的公有 IPv4 和 IPv6 端点的集合&#xff0c;如果使用 ping 方法&#xff0c;则可以使用来跟踪接口的连接状态。这些是具有高可用性的&#xff0c;通常可以可靠地用作确认网络连接的终端节点。或者&#xff0c;您也可以使用 ISP 的 DNS 解析器&a…

C语言结构体位定义(位段)的实际作用深入分析

1、结构体位段格式 struct struct_name {type [member_name] : width; };一般定义结构体&#xff0c;成员都是int、char等类型&#xff0c;占用的空间大小是固定的在成员名称后用冒号来指定位宽&#xff0c;可以指定每个成员所占用空间&#xff0c;并且也不用受结构体成员起始…

Django 模型字段类型详解

在 Django 中,模型是应用程序的核心部分之一。它们是 Python 对象,用于映射数据库表。每个模型都由一系列字段组成,这些字段代表数据库表中的列。Django 提供了丰富的字段类型,用于定义模型字段,以满足各种数据存储需求。 © ivwdcwso (ID: u012172506) 1. CharField Cha…

基于小程序宿舍报修系统的设计与实现ssm+论文源码调试讲解

第2章 开发环境与技术 基于微信小程序的宿舍报修系统的编码实现需要搭建一定的环境和使用相应的技术&#xff0c;接下来的内容就是对基于微信小程序的宿舍报修系统用到的技术和工具进行介绍。 2.1 MYSQL数据库 本课题所开发的应用程序在数据操作方面是不可预知的&#xff0c;…

周期性边界条件、近邻列表和原子间作用势

文章目录 1.周期性边界条件1.什么是周期性边界条件(PBC)2.周期性边界条件基本特点3.最小镜像约定4.Python实现 2.势场的有限距离截断1.原子间相互作用力2.势场截断的理论基础3.势场截断方法 3.近邻列表构筑与更新1.近邻算法&#xff1a;VerletList法2.近邻算法&#xff1a;区间…

Hive其四,Hive的数据导出,案例展示,表类型介绍

目录 一、Hive的数据导出 1&#xff09;导出数据到本地目录 2&#xff09;导出到hdfs的目录下 3&#xff09;直接将结果导出到本地文件中 二、一个案例 三、表类型 1、表类型介绍 2、内部表和外部表转换 3、两种表的区别 4、练习 一、Hive的数据导出 数据导出的分类&…