tcp 的重传,流量控制,拥塞控制

ops/2024/12/25 13:35:35/

      • tcp 的重传
        • 解决了什么问题
        • tcp的几种重传机制分别解决什么问题?
          • 方案 1: 超时重传
          • 方案2: 快速重传
          • 选择性确认(sack)
          • d-sack(重复接收)
        • 滑动窗口:
          • 累计应答
      • 流量控制
          • 解决什么问题?
          • 如何做的?
          • 问题1: 那如果第一次发送的数据都大于缓冲区的大小怎么办?
          • 问题2: 如果剩余大小为0会发生什么?
            • 问题: 如果返回的ack丢失了会发生什么?
            • 如何解决死锁的问题?
          • 问题3: tcp 的报文头有 40 字节,如果收到的窗口大小是 1 字节会发生什么?
            • 如何解决?
      • 拥塞控制
          • 解决什么问题?
        • 如何做?
          • 慢启动状态(试探网络压力的上限)
          • 阻塞避免(超过门限)
          • 阻塞发生

tcp 的重传

解决了什么问题

tcp 作为可靠的传输层协议,要确保每一个包都能被接收端收到.
如果有数据包在传输中丢失了怎么办?

如果有数据包丢失就需要重传数据包.
但是如何判断一个数据包是否丢失了呢?

tcp的几种重传机制分别解决什么问题?

如何设计一个重传机制?

方案 1: 超时重传
  1. 每传输一个包等待接收方返回 ack.
  2. 设置一个超时时间,超过超时时间还没有收到返回的,就任务丢包了要重传

问题1: 效率太慢了,每次都要等接收方返回 ack 才传输下一个

问题2: 超时时间太长与太短的问题
太长: 等待的时间就,传输效率低
太短: 太容易过期,包的重传率上升,无端消耗网络带宽

所以超时时间是一个动态的值,与网络的延时有关

方案2: 快速重传

要解决的问题: 超时重传的效率低,可以在超时重传的基础上进行升级:

升级:
接收方每次收到数据返回 ack 的时候带上下一个的编号
发送方如果连续收到 3 次相同的 编号,则判断为改数据丢包
就需要重传该数据

优点: 不需要等到每个包收到 ack 再传输下一个,提高了网络传输的效率

问题: 不知道具体哪些数据丢包了,也就是不知道传一个包还是传后面所有的包
传一个包: 假设发送了 1,2,3,4,5,6,7 包, 1 包接受到了,2,3,4 都没有收到,那么一个个重传就需要重传 3 次,效率太低
传后面所有的包:假设发送了 1,2,3,4,5,6,7 包, 1 包接受到了,只有2没有收到,那么 3,4,5,6,7 包就重复传输了,增加了网络的压力

选择性确认(sack)

要解决的问题: 快速恢复中到底传哪些包的问题(哪些包丢失的问题)
升级:
我们在 ack 的后面再加上一个已经接受到的包的编号(sack),这样发送方接收到ack 信息就知道哪些包已经收到了哪些包没有收到,就可以针对没有收到的包重传,不需要重传所有,与一个个重传

判断是否要重传的原理与快速重传相同

问题: 有的包可能并没有丢失,而是因为网络延时阻塞了,当我们重传之后,接收方又收到了网络中阻塞的包,就会收到重复的数据

d-sack(重复接收)

解决的问题: 哪些包是因为网络延时的问题重传(重复接受)/哪些包被复制了.
小于 ack 编号的 sack 就是重复接收的包,这些包是由于网络延迟太高/包在网络中被复制了导致的重复接收.

滑动窗口:

滑动窗口简单理解就是为了解决每一个包传输要接受到 ack 后再传下一个的效率太慢的问题,如果中途的 ack 丢包了,岂不是要重传,导致性能浪费.

基本原理:
发送方与接收方都有一个缓存区(窗口)
发送方的缓冲区: 存放已发送但没有收到 ack 的数据
接收方的缓冲区: 存放准备接受的数据(没收到)

这样就可以同时发送多个包了

累计应答

假设发送了 1,2,3,4,5,6,7 都 包, 前面 6 个包都没有收到,但是后面有一个 ack 7 证明包 1~6 都已经收到了,只是前面的 ack 丢包了. 就不需要重传了

解决的问题: ack 丢包重传的性能浪费.

流量控制

解决什么问题?
  • 解决接收端对包的处理能力有限,超过限度会丢包重传,加大网络压力的问题

流量控制: 就是让**「发送方」根据「接收方」的实际接收能力控制发送的数据量**

如何做的?

接收端有一个缓冲区,发送端发送的数据先会读到缓冲区中,然后再做处理

逻辑:
每次接受端发送 ack的时候都带上缓冲区的剩余大小,那么发送端读取到剩余大小,发送数据的数量就不会超过这个大小

问题1: 那如果第一次发送的数据都大于缓冲区的大小怎么办?

拥塞控制原理中数据传输开始是慢启动的,只发送 1mss 的大小,所以不会超

问题2: 如果剩余大小为0会发生什么?

按照上面的逻辑,如果剩余大小为 0,那么就不会发送数据,而是等接收方处理数据然后返回一个窗口大于 0 的 ack,这样就可以继续传输数据了

问题: 如果返回的ack丢失了会发生什么?

发送方不知道接收方可以发送数据了,而接受方也不知道发送方没收到 ack,就 造成了一种死锁的状态,没有数据和传输,卡死了.

如何解决死锁的问题?

当发送方收到的ack 的窗口大小为 0 时:
每过一段时间(启动计时器)问一下(发送探测报文)发送端是否可以接受数据了,而不是坐以待毙.

问题3: tcp 的报文头有 40 字节,如果收到的窗口大小是 1 字节会发生什么?

小窗口问题(糊涂窗口综合症)
当窗口较小时数据的有效传输就会非常低(当只有 41 字节的窗口,一次发送有效传输的数据只有一字节)这好比一列高铁只载了1 个人.并且接收端还要解析报文头,报文越多,效率越低.

如何解决?
  1. 小窗口时先返回 ack 的窗口为0,等窗口变大(当「窗口大小」小于 min( MSS,缓存空间/2),也就是小于 MSS 与 1/2 缓存大小中的最小值时,就会向发送方通告窗口为 0,也就阻止了发送方再发数据过来。)了再返回大的窗口

  2. 发送方保证可以发送的数据>=mss,如果小于则等待(接收方处理数据并返回 ask )大于的时候再发送.

拥塞控制

解决什么问题?

流量控制只是根据接收方的能力决定发送数据的速度,但是网络带宽是有限的,如果发送的数据超过了带宽的上限,就会出现大量的丢包与重传,而重传又会增加额外的网络负担,导致更多的丢包

所以当网络压力大时需要发送方自动的降低数据发送的效率,避免丢包重传导致的网络压力激增.

如何做?

核心思想是如何判断当前的网络压力状况?
判断的依据是丢包与超时(如果路由器的发送队列满了(压力大)再收到包就会丢掉)

  • 丢包是收到ack 中有缺少的包
  • 超时是收不到返回的 ack
慢启动状态(试探网络压力的上限)
  • 启动时的状态,先从 1mss 开始发送,指数级递增(1,2,4,8…)

  • 问题: 网络带宽是有限的,如果一直不断的增加一定会讲网络打爆

  • 解决方案: 设置门限,当超过门限就不再指数级递增

  • 问题: 门限是多少,由什么决定?

  • 一般来说大小是 65535 字节。

阻塞避免(超过门限)
  • 超过门限增加的速度就会变慢

  • 问题:多慢?

  • 每当收到一个 ACK 时,cwnd 增加 1/cwnd.

阻塞发生

需要判断当前网络情况:

  1. 丢包: 重复收到三个相同的 ack 表示有丢包的情况(阻塞不严重)

    • 快速恢复(重传丢的包)
    • 设置新门限=当前速度的一半
    • 减速:速度降为当前速度的一半
    • 进入阻塞避免阶段
  2. 超时: 超过过期时间没有收到 ack (阻塞很严重,已经收不到数据了)

    • 减速: 将速度降到1mss, 进入慢启动阶段
    • 重传超时的包.

参考:
https://www…com/network/3_tcp/tcp_feature.html#%E6%BB%91%E5%8A%A8%E7%AA%97%E5%8F%A3
https://zhuanlan.zhihu.com/p/37379780
https://juanha.github.io/2018/05/05/tcp/


http://www.ppmy.cn/ops/144856.html

相关文章

XILINX平台LINUX下高速ADC08060驱动

前置调研 原理图 AXI-FULL时序 由于项目需要实时性高,采用AXI-FULL接口ADC IP作为master端写入DDR中 引用: AXI_02 AXI4总线简介(协议、时序)_axi4总线时序-CSDN博客 AXI总线的访问 在ARM架构中,访问I/O地址通常通…

nacos-服务发现注册

服务发现注册分为三个角色:服务注册中心、服务提供者、服务消费者 服务注册中心:为服务提供者和消费者提供一个空间,服务提供者将自身服务注册到注册中心,仅对外暴露接口,服务消费者在将自身注册到注册中心的时候也会获…

React 前端框架简介

React 前端框架简介 React 是一个高效、灵活且开源的 JavaScript 库,用于构建用户界面 (UI)。 它专注于 视图层,通常与其他工具结合使用来开发复杂的前端应用。 为什么选择 React? 轻量灵活:仅负责视图层,适配多种框…

C++如何处理对象的状态变化?如何实现工厂模式?

1)如何处理对象的状态变化? 在 C中,可以通过以下几种方式处理对象的状态变化: 一、成员函数 成员函数可以修改对象的内部状态。例如: class MyClass { private:int value; public:MyClass(int initialValue) : value(i…

[c++11(二)]Lambda表达式和Function包装器及bind函数

1.前言 Lambda表达式着重解决的是在某种场景下使用仿函数困难的问题,而function着重解决的是函数指针的问题,它能够将其简单化。 本章重点: 本章将着重讲解lambda表达式的规则和使用场景,以及function的使用场景及bind函数的相关使…

V900新功能-电脑不在旁边,通过手机给PLC远程调试网关配置WIFI联网

您使用BDZL-V900时,是否遇到过以下这种问题? 去现场配置WIFI发现没带电脑,无法联网❌ 首次配置WIFI时需使用网线连电脑,不够快捷❌ 而博达智联为解决该类问题,专研了一款网关配网工具,实现用户现场使用手机…

Hadoop组成概述

Hadoop主要由HDFS、Mapreduce、yarn三部分组成,hdfs负责分布式文件数据的存储,yarn复杂资源的调度,mapreduce负责运算。 一、hdfs架构 namenode:存储文件的元数据信息 datanode:存储真实数据 2nn:对nam…

视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点

随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展&#xff0…