线程
在传统的操作系统中,每个进程都有一个地址空间和一个控制线程。事实上,这是大部分进程的定义。不过,在许多情况下,经常存在同一地址空间中运行多个控制线程的情形,这些线程就像是分离的进程。下面我们就着重探讨一下什么是线程
线程的使用
或许这个疑问也是你的疑问,为什么要在进程的基础上再创建一个线程的概念,准确的说,这其实是进程模型和线程模型的讨论,回答这个问题,可能需要分三步来回答
- 多线程之间会共享同一块地址空间和所有可用数据的能力,这是进程所不具备的
- 线程要比进程
更轻量级
,由于线程更轻,所以它比进程更容易创建,也更容易撤销。在许多系统中,创建一个线程要比创建一个进程快 10 - 100 倍。 - 第三个原因可能是性能方面的探讨,如果多个线程都是 CPU 密集型的,那么并不能获得性能上的增强,但是如果存在着大量的计算和大量的 I/O 处理,拥有多个线程能在这些活动中彼此重叠进行,从而会加快应用程序的执行速度
经典的线程模型
进程中拥有一个执行的线程,通常简写为 线程(thread)
。线程会有程序计数器,用来记录接着要执行哪一条指令;线程实际上 CPU 上调度执行的实体。
下图我们可以看到三个传统的进程,每个进程有自己的地址空间和单个控制线程。每个线程都在不同的地址空间中运行
下图中,我们可以看到有一个进程三个线程的情况。每个线程都在相同的地址空间中运行。
线程不像是进程那样具备较强的独立性。同一个进程中的所有线程都会有完全一样的地址空间,这意味着它们也共享同样的全局变量。由于每个线程都可以访问进程地址空间内每个内存地址,因此一个线程可以读取、写入甚至擦除另一个线程的堆栈。线程之间除了共享同一内存空间外,还具有如下不同的内容
上图左边的是同一个进程中每个线程共享
的内容,上图右边是每个线程
中的内容。也就是说左边的列表是进程的属性,右边的列表是线程的属性。
线程之间的状态转换和进程之间的状态转换是一样的。
每个线程都会有自己的堆栈,如下图所示
线程系统调用
进程通常会从当前的某个单线程开始,然后这个线程通过调用一个库函数(比如 thread_create
)创建新的线程。线程创建的函数会要求指定新创建线程的名称。创建的线程通常都返回一个线程标识符,该标识符就是新线程的名字。
当一个线程完成工作后,可以通过调用一个函数(比如 thread_exit
)来退出。紧接着线程消失,状态变为终止,不能再进行调度。在某些线程的运行过程中,可以通过调用函数例如 thread_join
,表示一个线程可以等待另一个线程退出。这个过程阻塞调用线程直到等待特定的线程退出。在这种情况下,线程的创建和终止非常类似于进程的创建和终止。
另一个常见的线程是调用 thread_yield
,它允许线程自动放弃 CPU 从而让另一个线程运行。这样一个调用还是很重要的,因为不同于进程,线程是无法利用时钟中断强制让线程让出 CPU 的。
POSIX 线程
POSIX 线程 通常称为 pthreads
是一种独立于语言而存在的执行模型,以及并行执行模型。
它允许程序控制时间上重叠的多个不同的工作流程。每个工作流程都称为一个线程,可以通过调用 POSIX Threads API 来实现对这些流程的创建和控制。可以把它理解为线程的标准。
POSIX Threads 的实现在许多类似且符合POSIX的操作系统上可用,例如 FreeBSD、NetBSD、OpenBSD、Linux、macOS、Android、Solaris,它在现有 Windows API 之上实现了pthread。
IEEE 是世界上最大的技术专业组织,致力于为人类的利益而发展技术。
线程调用 | 描述 |
pthread_create | 创建一个新线程 |
pthread_exit | 结束调用的线程 |
pthread_join | 等待一个特定的线程退出 |
pthread_yield | 释放 CPU 来运行另外一个线程 |
pthread_attr_init | 创建并初始化一个线程的属性结构 |
pthread_attr_destory | 删除一个线程的属性结构 |
所有的 Pthreads 都有特定的属性,每一个都含有标识符、一组寄存器(包括程序计数器)和一组存储在结构中的属性。这个属性包括堆栈大小、调度参数以及其他线程需要的项目。
所有的 Pthreads 都有特定的属性,每一个都含有标识符、一组寄存器(包括程序计数器)和一组存储在结构中的属性。这个属性包括堆栈大小、调度参数以及其他线程需要的项目。
线程实现
主要有三种实现方式
- 在用户空间中实现线程;
- 在内核空间中实现线程;
- 在用户和内核空间中混合实现线程。
下面我们分开讨论一下
在用户空间中实现线程
第一种方法是把整个线程包放在用户空间中,内核对线程一无所知,它不知道线程的存在。所有的这类实现都有同样的通用结构
线程在运行时系统之上运行,运行时系统是管理线程过程的集合,包括前面提到的四个过程: pthread_create, pthread_exit, pthread_join 和 pthread_yield。
在内核中实现线程
当某个线程希望创建一个新线程或撤销一个已有线程时,它会进行一个系统调用,这个系统调用通过对线程表的更新来完成线程创建或销毁工作。
内核中的线程表持有每个线程的寄存器、状态和其他信息。这些信息和用户空间中的线程信息相同,但是位置却被放在了内核中而不是用户空间中。另外,内核还维护了一张进程表用来跟踪系统状态。
所有能够阻塞的调用都会通过系统调用的方式来实现,当一个线程阻塞时,内核可以进行选择,是运行在同一个进程中的另一个线程(如果有就绪线程的话)还是运行一个另一个进程中的线程。但是在用户实现中,运行时系统始终运行自己的线程,直到内核剥夺它的 CPU 时间片(或者没有可运行的线程存在了)为止。
混合实现
结合用户空间和内核空间的优点,设计人员采用了一种内核级线程
的方式,然后将用户级线程与某些或者全部内核线程多路复用起来
在这种模型中,编程人员可以自由控制用户线程和内核线程的数量,具有很大的灵活度。采用这种方法,内核只识别内核级线程,并对其进行调度。其中一些内核级线程会被多个用户级线程多路复用。
进程间通信
进程是需要频繁的和其他进程进行交流的。下面我们会一起讨论有关 进程间通信(Inter Process Communication, IPC)
的问题。大致来说,进程间的通信机制可以分为 6 种
下面我们分别对其进行概述
信号 signal
信号是 UNIX 系统最先开始使用的进程间通信机制,因为 Linux 是继承于 UNIX 的,所以 Linux 也支持信号机制,通过向一个或多个进程发送异步事件信号
来实现,信号可以从键盘或者访问不存在的位置等地方产生;信号通过 shell 将任务发送给子进程。
你可以在 Linux 系统上输入 kill -l
来列出系统使用的信号,下面是我提供的一些信号
进程可以选择忽略发送过来的信号,但是有两个是不能忽略的:SIGSTOP
和 SIGKILL
信号。SIGSTOP 信号会通知当前正在运行的进程执行关闭操作,SIGKILL 信号会通知当前进程应该被杀死。除此之外,进程可以选择它想要处理的信号,进程也可以选择阻止信号,如果不阻止,可以选择自行处理,也可以选择进行内核处理。如果选择交给内核进行处理,那么就执行默认处理。
操作系统会中断目标程序的进程来向其发送信号、在任何非原子指令中,执行都可以中断,如果进程已经注册了新号处理程序,那么就执行进程,如果没有注册,将采用默认处理的方式。
管道 pipe
Linux 系统中的进程可以通过建立管道 pipe 进行通信
在两个进程之间,可以建立一个通道,一个进程向这个通道里写入字节流,另一个进程从这个管道中读取字节流。管道是同步的,当进程尝试从空管道读取数据时,该进程会被阻塞,直到有可用数据为止。shell 中的管线 pipelines
就是用管道实现的,当 shell 发现输出
sort <f | head
它会创建两个进程,一个是 sort,一个是 head,sort,会在这两个应用程序之间建立一个管道使得 sort 进程的标准输出作为 head 程序的标准输入。sort 进程产生的输出就不用写到文件中了,如果管道满了系统会停止 sort 以等待 head 读出数据
管道实际上就是 |
,两个应用程序不知道有管道的存在,一切都是由 shell 管理和控制的。
共享内存 shared memory
两个进程之间还可以通过共享内存进行进程间通信,其中两个或者多个进程可以访问公共内存空间。两个进程的共享工作是通过共享内存完成的,一个进程所作的修改可以对另一个进程可见(很像线程间的通信)。
在使用共享内存前,需要经过一系列的调用流程,流程如下
- 创建共享内存段或者使用已创建的共享内存段
(shmget())
- 将进程附加到已经创建的内存段中
(shmat())
- 从已连接的共享内存段分离进程
(shmdt())
- 对共享内存段执行控制操作
(shmctl())
先入先出队列 FIFO
先入先出队列 FIFO 通常被称为 命名管道(Named Pipes)
,命名管道的工作方式与常规管道非常相似,但是确实有一些明显的区别。未命名的管道没有备份文件:操作系统负责维护内存中的缓冲区,用来将字节从写入器传输到读取器。一旦写入或者输出终止的话,缓冲区将被回收,传输的数据会丢失。相比之下,命名管道具有支持文件和独特 API ,命名管道在文件系统中作为设备的专用文件存在。当所有的进程通信完成后,命名管道将保留在文件系统中以备后用。命名管道具有严格的 FIFO 行为
写入的第一个字节是读取的第一个字节,写入的第二个字节是读取的第二个字节,依此类推。
消息队列 Message Queue
一听到消息队列这个名词你可能不知道是什么意思,消息队列是用来描述内核寻址空间内的内部链接列表。可以按几种不同的方式将消息按顺序发送到队列并从队列中检索消息。每个消息队列由 IPC 标识符唯一标识。消息队列有两种模式,一种是严格模式
, 严格模式就像是 FIFO 先入先出队列似的,消息顺序发送,顺序读取。还有一种模式是 非严格模式
,消息的顺序性不是非常重要。
套接字 Socket
还有一种管理两个进程间通信的是使用 socket
,socket 提供端到端的双相通信。一个套接字可以与一个或多个进程关联。就像管道有命令管道和未命名管道一样,套接字也有两种模式,套接字一般用于两个进程之间的网络通信,网络套接字需要来自诸如TCP(传输控制协议)
或较低级别UDP(用户数据报协议)
等基础协议的支持。
套接字有以下几种分类
顺序包套接字(Sequential Packet Socket)
: 此类套接字为最大长度固定的数据报提供可靠的连接。此连接是双向的并且是顺序的。数据报套接字(Datagram Socket)
:数据包套接字支持双向数据流。数据包套接字接受消息的顺序与发送者可能不同。流式套接字(Stream Socket)
:流套接字的工作方式类似于电话对话,提供双向可靠的数据流。原始套接字(Raw Socket)
: 可以使用原始套接字访问基础通信协议。
调度
当一个计算机是多道程序设计系统时,会频繁的有很多进程或者线程来同时竞争 CPU 时间片。当两个或两个以上的进程/线程处于就绪状态时,就会发生这种情况。如果只有一个 CPU 可用,那么必须选择接下来哪个进程/线程可以运行。操作系统中有一个叫做 调度程序(scheduler)
的角色存在,它就是做这件事儿的,该程序使用的算法叫做 调度算法(scheduling algorithm)
。
调度算法的分类
毫无疑问,不同的环境下需要不同的调度算法。之所以出现这种情况,是因为不同的应用程序和不同的操作系统有不同的目标。也就是说,在不同的系统中,调度程序的优化也是不同的。这里有必要划分出三种环境
批处理(Batch)
: 商业领域交互式(Interactive)
: 交互式用户环境实时(Real time)
批处理中的调度
现在让我们把目光从一般性的调度转换为特定的调度算法。下面我们会探讨在批处理中的调度。
先来先服务
最简单的非抢占式调度算法的设计就是 先来先服务(first-come,first-serverd)
。当第一个任务从外部进入系统时,将会立即启动并允许运行任意长的时间。它不会因为运行时间太长而中断。当其他作业进入时,它们排到就绪队列尾部。当正在运行的进程阻塞,处于等待队列的第一个进程就开始运行。当一个阻塞的进程重新处于就绪态时,它会像一个新到达的任务,会排在队列的末尾,即排在所有进程最后。
这个算法的强大之处在于易于理解和编程,在这个算法中,一个单链表记录了所有就绪进程。要选取一个进程运行,只要从该队列的头部移走一个进程即可;要添加一个新的作业或者阻塞一个进程,只要把这个作业或进程附加在队列的末尾即可。这是很简单的一种实现。
最短作业优先
批处理中,第二种调度算法是 最短作业优先(Shortest Job First)
,我们假设运行时间已知。例如,一家保险公司,因为每天要做类似的工作,所以人们可以相当精确地预测处理 1000 个索赔的一批作业需要多长时间。当输入队列中有若干个同等重要的作业被启动时,调度程序应使用最短优先作业算法
需要注意的是,在所有的进程都可以运行的情况下,最短作业优先的算法才是最优的。
最短剩余时间优先
最短作业优先的抢占式版本被称作为 最短剩余时间优先(Shortest Remaining Time Next)
算法。使用这个算法,调度程序总是选择剩余运行时间最短的那个进程运行。
交互式系统中的调度
交互式系统中在个人计算机、服务器和其他系统中都是很常用的,所以有必要来探讨一下交互式调度
轮询调度
一种最古老、最简单、最公平并且最广泛使用的算法就是 轮询算法(round-robin)
。每个进程都会被分配一个时间段,称为时间片(quantum)
,在这个时间片内允许进程运行。如果时间片结束时进程还在运行的话,则抢占一个 CPU 并将其分配给另一个进程。如果进程在时间片结束前阻塞或结束,则 CPU 立即进行切换。轮询算法比较容易实现。调度程序所做的就是维护一个可运行进程的列表,就像下图中的 a,当一个进程用完时间片后就被移到队列的末尾,就像下图的 b。
优先级调度
轮询调度假设了所有的进程是同等重要的。但事实情况可能不是这样。例如,在一所大学中的等级制度,首先是院长,然后是教授、秘书、后勤人员,最后是学生。这种将外部情况考虑在内就实现了优先级调度(priority scheduling)
它的基本思想很明确,每个进程都被赋予一个优先级,优先级高的进程优先运行。
多级队列
最早使用优先级调度的系统是 CTSS(Compatible TimeSharing System)
。CTSS 在每次切换前都需要将当前进程换出到磁盘,并从磁盘上读入一个新进程。为 CPU 密集型进程设置较长的时间片比频繁地分给他们很短的时间要更有效(减少交换次数)。另一方面,如前所述,长时间片的进程又会影响到响应时间,解决办法是设置优先级类。属于最高优先级的进程运行一个时间片,次高优先级进程运行 2 个时间片,再下面一级运行 4 个时间片,以此类推。当一个进程用完分配的时间片后,它被移到下一类。
最短进程优先
最短进程优先是根据进程过去的行为进行推测,并执行估计运行时间最短的那一个。假设每个终端上每条命令的预估运行时间为 T0
,现在假设测量到其下一次运行时间为 T1
,可以用两个值的加权来改进估计时间,即aT0+ (1- 1)T1
。通过选择 a 的值,可以决定是尽快忘掉老的运行时间,还是在一段长时间内始终记住它们。当 a = 1/2 时,可以得到下面这个序列
![image-20200220120452410](/Users/mr.l/Library/Application Support/typora-user-images/image-20200220120452410.png)
可以看到,在三轮过后,T0 在新的估计值中所占比重下降至 1/8。
保证调度
一种完全不同的调度方法是对用户做出明确的性能保证。一种实际而且容易实现的保证是:若用户工作时有 n 个用户登录,则每个用户将获得 CPU 处理能力的 1/n。类似地,在一个有 n 个进程运行的单用户系统中,若所有的进程都等价,则每个进程将获得 1/n 的 CPU 时间。
彩票调度
对用户进行承诺并在随后兑现承诺是一件好事,不过很难实现。但是存在着一种简单的方式,有一种既可以给出预测结果而又有一种比较简单的实现方式的算法,就是 彩票调度(lottery scheduling)
算法。
其基本思想是为进程提供各种系统资源(例如 CPU 时间)的彩票。当做出一个调度决策的时候,就随机抽出一张彩票,拥有彩票的进程将获得该资源。在应用到 CPU 调度时,系统可以每秒持有 50 次抽奖,每个中奖者将获得比如 20 毫秒的 CPU 时间作为奖励。
公平分享调度
到目前为止,我们假设被调度的都是各个进程自身,而不用考虑该进程的拥有者是谁。结果是,如果用户 1 启动了 9 个进程,而用户 2 启动了一个进程,使用轮转或相同优先级调度算法,那么用户 1 将得到 90 % 的 CPU 时间,而用户 2 将之得到 10 % 的 CPU 时间。
为了阻止这种情况的出现,一些系统在调度前会把进程的拥有者考虑在内。在这种模型下,每个用户都会分配一些CPU 时间,而调度程序会选择进程并强制执行。因此如果两个用户每个都会有 50% 的 CPU 时间片保证,那么无论一个用户有多少个进程,都将获得相同的 CPU 份额。