最大似然检测在通信解调中的应用

ops/2024/12/23 13:25:03/

        最大似然检测(Maximum Likelihood Detection,MLD),也称为最大似然序列估计(Maximum Likelihood Sequence Estimation,MLSE),是一种在通信系统中广泛应用的解调方法。其核心思想是在给定观测数据的情况下,选择使观测数据出现概率最大的参数值作为估计结果。这种方法特别适用于需要考虑信道时间弥散影响的场景。

一、最大似然检测的基本原理

        最大似然检测基于概率模型,假设观测到的数据是随机变量X的实例,其概率密度函数为f(x|θ),其中θ是未知参数。我们的目标是通过观测到的数据来估计这些未知参数θ。最大似然估计的目标是找到使似然函数L(θ)达到最大值的θ,即:

        θ=argmaxθL(θ)

其中,似然函数L(θ)是由观测到的数据集合x的概率密度函数f(x|θ)构成的。假设观测到的数据是随机变量X的实例,其概率密度函数为f(x|θ),则似然函数L(θ)可以表示为:

        L(θ)=∏i=1Nf(xi|θ)L(θ)=∏i=1Nf(xi|θ)

其中,xi是观测到的数据点,N是数据点的数量。

        为了便于计算,通常对似然函数L(θ)取对数,得到对数似然函数l(θ):

        l(θ)=logL(θ)=∑i=1Nlogf(xi|θ)l(θ)=logL(θ)=∑i=1Nlogf(xi|θ)

然后,通过对对数似然函数求导数,找到使其达到最大值的参数θ。

二、最大似然检测在通信解调中的应用

        在通信解调中,最大似然检测被广泛应用于信号的估计、滤波、解调等方面。假设信道传输的信号为s(t),噪声为n(t),接收端信号为r(t),信道传输函数为h(t),则:

        r(t)=s(t)∗h(t)+n(t)r(t)=s(t)∗h(t)+n(t)

                我们希望通过观测到的r(t)来估计信道传输函数h(t)或其他相关参数。

代码示例:最大似然检测在BPSK解调中的应用

以下是一个使用Python实现最大似然检测在BPSK解调中的示例代码。

python代码

import numpy as np

import scipy.optimize as opt

import scipy.signal as signal

# 生成信号和噪声

f0 = 5 # 信号频率

T = 1 / f0 # 信号周期

t = np.linspace(0, 10, 1000) # 时间向量

a = 2 + 1j # 信号幅度和相位

h = np.sum([a * np.exp(1j * 2 * np.pi * f0 * k * t) for k in range(-5, 6)]) # 信道传输函数

n = np.random.normal(0, 0.1, 1000) # 噪声

r = h * h + n # 接收信号

# 信号的FFT

R = np.fft.fft(r)

H = np.fft.fft(h)

N = len(R) // 2

# 定义对数似然函数

def loglikelihood(a):

ak = a[::int(T)] # 提取信号系数

Y = np.zeros(N, dtype=complex)

for k in range(int(T)):

Y += ak[k] * H[k]

Y = np.fft.ifft(Y[:N])

return np.sum(np.log(1 + np.abs(Y)**2))

# 最大似然估计

result = opt.minimize(loglikelihood, x0=np.zeros(100), method='BFGS')

ahat = result.x

# 解调

hhat = np.sum([ahat[k] * np.exp(1j * 2 * np.pi * f0 * k * t) for k in range(-5, 6)])

s = np.dot(hhat.conjugate(), r) # 通过内积恢复原始信号

# 绘制结果

import matplotlib.pyplot as plt

plt.figure(figsize=(12, 6))

plt.subplot(2, 1, 1)

plt.plot(t, np.real(h), label='Original Signal')

plt.plot(t, np.real(hhat), label='Estimated Signal')

plt.legend()

plt.title('Channel Response Estimation')

plt.subplot(2, 1, 2)

plt.plot(t, np.real(s), label='Recovered Signal')

plt.legend()

plt.title('Recovered Signal from Received Data')

plt.tight_layout()

plt.show()

代码解释:

        (1)生成信号和噪声:首先生成一个BPSK调制信号,并添加高斯噪声。

        (2)信号的FFT:对接收到的信号和信道传输函数进行快速傅里叶变换(FFT)。

        (3)定义对数似然函数:根据最大似然估计的原理,定义对数似然函数。

        (4)最大似然估计:使用SciPy的优化函数minimize来最大化对数似然函数,从而估计信号参数。

        (5)解调:通过估计的信道传输函数和接收到的信号,使用内积恢复原始信号。

        (6)绘制结果:使用Matplotlib绘制原始信号、估计信号和恢复信号的波形。

        通过上述示例,我们可以看到最大似然检测在通信解调中的实际应用和效果。这种方法在复杂的通信环境中,尤其是在需要考虑信道时间弥散影响的情况下,具有显著的优势。


http://www.ppmy.cn/ops/144311.html

相关文章

使用NodeJs 实现图片转PPT

序言 帮朋友下载网络资源。最后转化为PPT 网页是这样的 下载图片 需要使用nodejs来下载图片 安装需要的库 npm install axios执行下面的JS const fs require(fs); const path require(path); const axios require(axios); const { URL } require(url); const readlin…

从零开始学前端之HTML(三)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 HTML CSS 内联样式内部样式表外部样式表 HTML图像HTML 表格HTML列表HTML区块HTML表单HTML框架 HTML CSS 内联样式- 在HTML元素中使用"style" 属性 内部…

驾驶证识别API-JavaScript驾驶证ocr接口集成-场景解析

随着数字化转型的加速和人工智能技术的进步,驾驶证识别技术正逐渐成为众多行业优化服务流程、提升用户体验的关键工具,它不仅仅是一个简单的信息提取过程,更体现了现代信息技术与传统交通管理融合的新趋势。 通过集成驾驶证识别技术&#xff…

【java面向对象编程】第七弹----Object类、类变量与类方法

笔上得来终觉浅,绝知此事要躬行 🔥 个人主页:星云爱编程 🔥 所属专栏:javase 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 一、Object类 1.1equa…

聚观早报 | 百度回应进军短剧;iPad Air将升级OLED

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 12月18日消息 百度回应进军短剧 iPad Air将升级OLED 三星Galax S25 Ultra配色细节 一加Ace 5系列存储规格 小米…

设计模式-访问者设计模式

介绍 访问者模式(Visitor),表示一个作用于某对象结构中的各元素的操作,它使你可以在不改变个元素的类的前提下定义作用于这些元素的新操作。 问题:在一个机构里面有两种员工,1.Teacher 2.Engineer 员…

深度学习-74-大语言模型LLM之基于API与llama.cpp启动的模型进行交互

文章目录 1 大模型量化方法1.1 GPTQ(后训练量化)1.2 GGUF(支持CPU)1.3 AWQ(后训练量化)2 llama.cpp2.1 功能2.1.1 Chat(聊天)2.1.2 Completion(补全)2.2 运行开源LLM2.2.1 下载安装llama.cpp2.2.2 下载gguf格式的模型2.2.3 运行大模型3 API访问3.1 调用补全3.2 调用聊天3.3 提取…