OpenCV实验篇:识别图片颜色并绘制轮廓

ops/2024/12/13 12:51:02/

第三篇:识别图片颜色并绘制轮廓

1. 实验原理

颜色识别的原理:

  • 颜色在图像处理中通常使用 HSV 空间来表示。

    • HSV 空间是基于人类视觉系统的一种颜色模型,其中:

      • H(Hue):色调,表示颜色的种类,例如红色、绿色。

      • S(Saturation):饱和度,表示颜色的纯度。

      • V(Value):明度,表示颜色的亮度。

    • 使用 HSV 空间分割颜色比直接使用 RGB 空间更加直观且效果更好。

轮廓绘制的原理:

  • 轮廓是指图像中具有相同颜色或灰度值的边界。

  • 在 OpenCV 中,通过以下步骤实现轮廓绘制:

    1. 转换图像到 HSV 空间,设定颜色阈值,分割出感兴趣区域。

    2. 使用 cv2.findContours 查找轮廓。

    3. 使用 cv2.drawContours 将轮廓绘制在原图或复制图像上。

2. 实验代码

以下是基于 OpenCV 的完整代码:

import cv2
import numpy as np# --------------------1. 读取图像--------------------
# 加载目标图片
image = cv2.imread("./color_1.png")
# 调整图片大小,方便显示和处理
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)# --------------------2. 转换到 HSV 空间--------------------
# 将图像从 BGR 空间转换到 HSV 空间
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# --------------------3. 定义颜色阈值范围--------------------
# 定义要识别的颜色范围(以蓝色为例)
# 这里的值需要根据实际颜色进行调整
lower_blue = np.array([100, 150, 50])  # HSV 下界
upper_blue = np.array([140, 255, 255])  # HSV 上界# 使用 inRange 函数分割颜色区域
mask = cv2.inRange(image_hsv, lower_blue, upper_blue)# --------------------4. 图像处理--------------------
# 使用形态学操作去除噪点(可选)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
mask_cleaned = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)# --------------------5. 查找轮廓--------------------
# 在掩码图像中查找轮廓
contours, hierarchy = cv2.findContours(mask_cleaned, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# --------------------6. 绘制轮廓--------------------
# 创建一个原始图像的副本,用于绘制轮廓
image_contours = image.copy()
# 在副本上绘制轮廓
cv2.drawContours(image_contours, contours, -1, (0, 255, 0), 3)# --------------------7. 显示结果--------------------
# 显示原始图像
cv2.imshow("Original Image", image)
# 显示掩码图像
cv2.imshow("Mask", mask_cleaned)
# 显示绘制了轮廓的图像
cv2.imshow("Contours", image_contours)# 等待按键退出
cv2.waitKey(0)
cv2.destroyAllWindows()
3. 实验现象

实验效果:

  1. 原始图像窗口:显示原始图像。

  2. 掩码窗口:显示分割后的蓝色区域(白色部分为识别的颜色)。

  3. 轮廓绘制窗口:显示绘制了颜色轮廓的图像。

实验总结:

  1. 使用 HSV 空间可以高效地分割颜色区域。

  2. cv2.findContourscv2.drawContours 可以精确提取和标记物体的边界。

  3. 这种方法可以应用在以下场景:

    • 交通标志识别。

    • 物体检测与跟踪。

    • 色彩分类任务。


http://www.ppmy.cn/ops/141542.html

相关文章

windows C#-自动实现的属性

当属性访问器中不需要其他逻辑时,自动实现的属性使属性声明更加简洁。 它们还允许客户端代码创建对象。 当你声明以下示例中所示的属性时,编译器将创建仅可以通过该属性的 get 和 set 访问器访问的专用、匿名支持字段。 init 访问器也可以声明为自动实现…

FristiLeaks 1.3靶场渗透测试

FristiLeaks 1.3: https://www.vulnhub.com/entry/fristileaks-13,133/ 靶场:FristiLeaks 1.3靶场 攻击机:kali-linux-2024 1,在开启之前我们需要将靶机网络适配器改为NAT模式,并且对MAC地址进行手动编辑,VMware用户需…

开发一套SDK 第一弹

自动安装依赖包 添加条件使能 #ex: filetypesh bash_ls 识别 达到预期,多个硬件环境 等待文件文件系统挂在完成 或者创建 /sys/class/ 属性文件灌入配置操作 AI 提供的 netlink 调试方法,也是目前主流调用方法,socket yyds #include <linux/module.h> #include <linux…

HTML前端开发-- Iconfont 矢量图库使用简介

一、SVG 简介及基础语法 1. SVG 简介 SVG&#xff08;Scalable Vector Graphics&#xff09;是一种基于 XML 的矢量图形格式&#xff0c;用于在网页上显示二维图形。SVG 图形可以无限缩放而不会失真&#xff0c;非常适合用于图标、图表和复杂图形。SVG 文件是文本文件&#x…

Python数据分析(OpenCV视频处理)

处理视频我们引入的还是numpy 和 OpenCV 的包 引入方式如下&#xff1a; import numpy as np import cv2 我们使用OpenCV来加载本地视频&#xff0c;参数就是你视频的路径就可以 #加载视频 cap cv2.VideoCapture(./1.mp4) 下面我们进行读取视频 #读取视频 flag,frame cap.re…

基于springboot的机器人学习交流网站系统

博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业六年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了多年的设计程序开发&#xff0c;开发过上千套设计程序&#xff0c;没有什么华丽的语言&#xff0c;只有实…

深度优先的艺术:探索二叉树的深搜算法精髓

文章目录 前言☀️一、计算布尔二叉树的值&#x1f319;解法⭐代码 ☀️二、求根节点到叶节点数字之和&#x1f319;解法⭐代码 ☀️三、二叉树剪枝&#x1f319;解法⭐代码 ☀️四、验证二叉搜索树&#x1f319;解法☁️步骤⭐代码 ☀️五、二叉搜索树中第k小的元素&#x1f3…

7. MySQL 管理:系统数据库与常见工具

本文详述 MySQL 的系统数据库功能及常见工具的简单用法&#xff0c;并提供具体指令解析。 1. 系统数据库 MySQL 默认提供四个系统数据库&#xff0c;每个数据库都有特定的功能。下表总结了它们的作用&#xff1a; 数据库名作用mysql存储数据库用户、权限、角色等管理信息。如…