skywalking es查询整理

ops/2024/11/27 6:10:27/

索引介绍

sw_records-all

这个索引用于存储所有的采样记录,包括但不限于慢SQL查询、Agent分析得到的数据等。这些记录数据包括Traces、Logs、TopN采样语句和告警信息。它们被用于性能分析和故障排查,帮助开发者和运维团队理解服务的行为和性能特点。

mapping
 {"sw_records-all": {"aliases": {"sw_records-all": {}},"mappings": {"_source": {"excludes": ["tags"]},"properties": {"alarm_message": {"type": "keyword","copy_to": ["alarm_message_match"},"alarm_message_match": {"type": "text","analyzer": "oap_analyzer"},"continuous_profiling_json": {"type": "keyword","index": false},"create_time": {"type": "long"},"data_binary": {"type": "binary"},"dump_binary": {"type": "binary"},"dump_period": {"type": "integer"},"dump_time": {"type": "long"},"duration": {"type": "integer"},"end_time_nanos": {"type": "integer"},"end_time_second": {"type": "long"},"endpoint_name": {"type": "keyword"},"entity_id": {"type": "keyword"},"event": {"type": "keyword"},"extension_config_json": {"type": "keyword","index": false},"fixed_trigger_duration": {"type": "long"},"id0": {"type": "keyword","index": false},"id1": {"type": "keyword","index": false},"instance_id": {"type": "keyword"},"last_update_time": {"type": "long"},"latency": {"type": "long"},"logical_id": {"type": "keyword"},"max_sampling_count": {"type": "integer"},"min_duration_threshold": {"type": "integer"},"name": {"type": "keyword","index": false},"operation_time": {"type": "long"},"operation_type": {"type": "integer","index": false},"process_labels_json": {"type": "keyword"},"record_table": {"type": "keyword"},"related_trace_id": {"type": "keyword"},"rule_name": {"type": "keyword"},"schedule_id": {"type": "keyword"},"scope": {"type": "integer"},"segment_id": {"type": "keyword"},"sequence": {"type": "integer"},"service_id": {"type": "keyword"},"stack_binary": {"type": "binary"},"stack_id": {"type": "keyword"},"start_time": {"type": "long"},"start_time_nanos": {"type": "integer"},"start_time_second": {"type": "long"},"statement": {"type": "keyword","index": false},"tags": {"type": "keyword"},"tags_raw_data": {"type": "binary"},"target_type": {"type": "integer"},"task_id": {"type": "keyword"},"time_bucket": {"type": "long"},"timestamp": {"type": "long"},"trace_id": {"type": "keyword","index": false},"trace_ref_type": {"type": "integer"},"trace_segment_id": {"type": "keyword"},"trace_span_id": {"type": "keyword"},"trigger_type": {"type": "integer"},"upload_time": {"type": "long"}}},"settings": {"index": {"routing": {"allocation": {"include": {"_tier_preference": "data_content"}}},"refresh_interval": "30s","number_of_shards": "1","provided_name": "sw_records-all-20241125","creation_date": "1732464023751","analysis": {"analyzer": {"oap_analyzer": {"type": "stop"}}},"number_of_replicas": "1","uuid": "qrRVCMSNSnO90iz9hHWD0Q","version": {"created": "7170799"}}}}
}

sw_metrics-all

 这个索引存储服务、服务实例及端点的元数据,即指标信息。这些指标数据包括服务的响应时间、吞吐量、错误率等关键性能指标,以分钟级别存储。这些数据对于监控服务性能至关重要,因为它们提供了实时的性能反馈,使得团队能够快速识别和解决性能问题。

metric_table枚举值

1、endpoint_cpm:端点的每分钟调用次数(CPM)

2、endpoint_percentile:端点的响应时间百分位数

3、endpoint_resp_time:端点的平均响应时间

4、endpoint_sla:服务等级协议(SLA)指标

5、endpoint_sidecar_internal_req_latency_nanos 和 endpoint_sidecar_internal_resp_latency_nanos:端点Sidecar内部请求和响应延迟的纳秒数

6、instance_jvm_xxx:服务实例的JVM相关指标,如类加载数量、CPU使用率、内存使用情况、垃圾回收次数和线程状态等

7、meter_thread_pool:线程池相关的度量

8、service_instance_cpm、service_instance_resp_time、service_instance_sla:服务实例级别的CPM、响应时间和SLA指标

9、service_instance_sidecar_internal_req_latency_nanos 和 service_instance_sidecar_internal_resp_latency_nanos:服务实例级别的Sidecar内部请求和响应延迟的纳秒数

result

{"key": "endpoint_cpm","doc_count": 5763},{"key": "endpoint_percentile","doc_count": 5763},{"key": "endpoint_resp_time","doc_count": 5763},{"key": "endpoint_sla","doc_count": 5763},{"key": "endpoint_sidecar_internal_req_latency_nanos","doc_count": 5754},{"key": "endpoint_sidecar_internal_resp_latency_nanos","doc_count": 5754},{"key": "instance_jvm_class_loaded_class_count","doc_count": 2811},{"key": "instance_jvm_class_total_loaded_class_count","doc_count": 2811},{"key": "instance_jvm_class_total_unloaded_class_count","doc_count": 2811},{"key": "instance_jvm_cpu","doc_count": 2811},{"key": "instance_jvm_memory_heap","doc_count": 2811},{"key": "instance_jvm_memory_heap_max","doc_count": 2811},{"key": "instance_jvm_memory_noheap","doc_count": 2811},{"key": "instance_jvm_memory_noheap_max","doc_count": 2811},{"key": "instance_jvm_old_gc_count","doc_count": 2811},{"key": "instance_jvm_old_gc_time","doc_count": 2811},{"key": "instance_jvm_thread_blocked_state_thread_count","doc_count": 2811},{"key": "instance_jvm_thread_daemon_count","doc_count": 2811},{"key": "instance_jvm_thread_live_count","doc_count": 2811},{"key": "instance_jvm_thread_peak_count","doc_count": 2811},{"key": "instance_jvm_thread_runnable_state_thread_count","doc_count": 2811},{"key": "instance_jvm_thread_timed_waiting_state_thread_count","doc_count": 2811},{"key": "instance_jvm_thread_waiting_state_thread_count","doc_count": 2811},{"key": "instance_jvm_young_gc_count","doc_count": 2811},{"key": "instance_jvm_young_gc_time","doc_count": 2811},{"key": "meter_thread_pool","doc_count": 2811},{"key": "service_instance_cpm","doc_count": 1661},{"key": "service_instance_resp_time","doc_count": 1661},{"key": "service_instance_sla","doc_count": 1661},{"key": "service_instance_sidecar_internal_req_latency_nanos","doc_count": 1659},{"key": "service_instance_sidecar_internal_resp_latency_nanos","doc_count": 1659}

mapping
{"sw_metrics-all-20241125": {"aliases": {"sw_metrics-all": {}},"mappings": {"properties": {"address": {"type": "keyword"},"agent_id": {"type": "keyword"},"component_id": {"type": "integer","index": false},"component_ids": {"type": "keyword","index": false},"count": {"type": "long","index": false},"dataset": {"type": "text","index": false},"datatable_count": {"type": "text","index": false},"datatable_summation": {"type": "text","index": false},"datatable_value": {"type": "text","index": false},"denominator": {"type": "long"},"dest_endpoint": {"type": "keyword"},"dest_process_id": {"type": "keyword"},"dest_service_id": {"type": "keyword"},"dest_service_instance_id": {"type": "keyword"},"detect_type": {"type": "integer"},"double_summation": {"type": "double","index": false},"double_value": {"type": "double"},"ebpf_profiling_schedule_id": {"type": "keyword"},"end_time": {"type": "long"},"endpoint": {"type": "keyword"},"endpoint_traffic_name": {"type": "keyword","copy_to": ["endpoint_traffic_name_match"]},"endpoint_traffic_name_match": {"type": "text","analyzer": "oap_analyzer"},"entity_id": {"type": "keyword"},"instance_id": {"type": "keyword"},"instance_traffic_name": {"type": "keyword","index": false},"int_value": {"type": "integer"},"label": {"type": "keyword"},"labels_json": {"type": "keyword","index": false},"last_ping": {"type": "long"},"last_update_time_bucket": {"type": "long"},"layer": {"type": "integer"},"match": {"type": "long","index": false},"message": {"type": "keyword"},"metric_table": {"type": "keyword"},"name": {"type": "keyword"},"numerator": {"type": "long"},"parameters": {"type": "keyword","index": false},"percentage": {"type": "integer"},"precision": {"type": "integer","index": false},"process_id": {"type": "keyword"},"profiling_support_status": {"type": "integer"},"properties": {"type": "text","index": false},"ranks": {"type": "text","index": false},"remote_service_name": {"type": "keyword"},"represent_service_id": {"type": "keyword"},"represent_service_instance_id": {"type": "keyword"},"s_num": {"type": "long","index": false},"service": {"type": "keyword"},"service_group": {"type": "keyword"},"service_id": {"type": "keyword"},"service_instance": {"type": "keyword"},"service_instance_id": {"type": "keyword"},"service_name": {"type": "keyword"},"service_traffic_name": {"type": "keyword","copy_to": ["service_traffic_name_match"]},"service_traffic_name_match": {"type": "text","analyzer": "oap_analyzer"},"short_name": {"type": "keyword"},"source_endpoint": {"type": "keyword"},"source_process_id": {"type": "keyword"},"source_service_id": {"type": "keyword"},"source_service_instance_id": {"type": "keyword"},"span_name": {"type": "keyword"},"start_time": {"type": "long"},"summation": {"type": "long","index": false},"t_num": {"type": "long","index": false},"tag_key": {"type": "keyword"},"tag_type": {"type": "keyword"},"tag_value": {"type": "keyword"},"task_id": {"type": "keyword"},"time_bucket": {"type": "long"},"total": {"type": "long","index": false},"total_num": {"type": "long","index": false},"type": {"type": "keyword"},"uuid": {"type": "keyword"},"value": {"type": "long"}}},"settings": {"index": {"routing": {"allocation": {"include": {"_tier_preference": "data_content"}}},"refresh_interval": "30s","number_of_shards": "1","provided_name": "sw_metrics-all-20241125","creation_date": "1732464018472","analysis": {"analyzer": {"oap_analyzer": {"type": "stop"}}},"number_of_replicas": "1","uuid": "WzZSWrHRSKaHFFwbm5D75A","version": {"created": "7170799"}}}}
}
字段解释

address:服务实例的网络地址

agent_id:SkyWalking Agent的唯一标识符

component_id:组件的唯一标识符

component_ids:一个包含多个组件ID的列表,用于标识服务中使用的所有组件

count:计数器,记录调用次数等

dataset:数据集的标识符,用于区分不同类型的监控数据

datatable_count、datatable_summation、datatable_value:与数据表相关的字段,用于存储汇总数据

denominator:用于计算比率的分母值

dest_endpoint:目标端点的名称,用于标识服务调用的目标

dest_process_id、dest_service_id、dest_service_instance_id:目标进程、服务和实例的唯一标识符

detect_type:检测类型的标识符

double_summation:双精度浮点数的总和

double_value:双精度浮点数值

ebpf_profiling_schedule_id:eBPF性能分析任务的标识符

end_time:事件或记录的结束时间戳

endpoint:端点的名称,用于标识服务中的特定操作

endpoint_traffic_name:端点流量的名称,用于标识端点的流量

entity_id:实体的唯一标识符,用于标识服务、端点或实例

instance_id:服务实例的唯一标识符

instance_traffic_name:服务实例流量的名称

int_value:整数值

label:用于分类或标记数据的标签

labels_json:包含多个标签的JSON字符串

last_ping:服务实例最后一次发送心跳的时间戳

last_update_time_bucket:数据最后一次更新的时间桶

layer:服务的层次或层级

match:用于匹配规则的标识符

message:与事件或日志相关的信息

metric_table:度量表的名称,用于标识特定的度量数据

name:实体、服务或端点的名称

numerator:用于计算比率的分子值

parameters:与事件或操作相关的参数

percentage:百分比值

precision:数据的精度

process_id:进程的唯一标识符

profiling_support_status:性能分析支持的状态

properties:实体的属性

ranks:排名或等级

remote_service_name:远程服务的名称

represent_service_id、represent_service_instance_id:表示服务或实例的唯一标识符

s_num:用于统计的数值

service:服务的名称

service_group:服务组的名称

service_id:服务的唯一标识符

service_instance:服务实例的名称

service_instance_id:服务实例的唯一标识符

service_name:服务的名称

service_traffic_name:服务流量的名称

short_name:实体的简称或缩写

source_endpoint:源端点的名称

source_process_id、source_service_id、source_service_instance_id:源进程、服务和实例的唯一标识符

span_name:跨度(Span)的名称,用于分布式追踪

start_time:事件或记录的开始时间戳

summation:数值的总和

t_num:用于统计的数值

tag_key、tag_type、tag_value:标签的键、类型和值

task_id:任务的唯一标识符

time_bucket:时间桶,用于数据的时序聚合

total、total_num:总数和数量

type:数据的类型

uuid:全局唯一标识符

value:度量值

sw_segment

sw_segment索引用于收集链路信息日志。在SkyWalking中,一个Segment代表一个分布式追踪的路径,它由多个Span组成,记录了一次完整的请求处理过程。这些数据对于理解服务之间的调用关系和性能特性非常重要,它们是实现分布式追踪和性能监控的基础。

sw_zipkin_span

sw_zipkin_span索引用于存储Zipkin跟踪的Span数据。SkyWalking可以作为Zipkin的替代服务器,提供高级功能,这个索引就是用来兼容Zipkin格式的追踪数据。

sw_browser_error_log

sw_browser_error_log索引用于收集浏览器日志,特别是错误日志。这些日志对于前端监控和错误分析非常有用,可以帮助开发者了解用户在使用应用时遇到的前端问题。

sw_log

sw_log索引用于收集除浏览器外的日志。这些日志可能来自于后端服务、中间件或其他系统组件,对于整体的系统监控和日志分析非常重要。

sw_continuous_profiling_policy

这个索引用于存储连续性能分析(Continuous Profiling)的策略配置。连续性能分析是SkyWalking的一个特性,它允许基于预设的策略自动触发性能分析任务。这些策略可以定义何时以及如何对特定的目标(如进程或服务)进行性能分析,以便及时发现和诊断性能问题。例如,当eBPF Agent检测到某个进程的指标符合策略规则时,它会立即触发对该进程的性能分析任务,从而减少中间步骤,加快定位性能问题的能力

sw_ui_template

sw_ui_template索引用于存储SkyWalking UI的模板配置。这些模板定义了SkyWalking UI中的仪表板和视图,包括官方提供的默认仪表板以及用户自定义的仪表板。用户可以通过这些模板来创建新的仪表板,添加新的标签/页面/小部件,并根据自己的偏好重新配置仪表板。模板支持层(Layer)和实体类型(Entity Type)的概念,这对于理解和自定义SkyWalking UI中的仪表板至关重要

查询语句整理

查询sw_metrics-all索引

1、查找特定时间范围内,与特定服务相关的服务关系指标  

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"bool": {"should": [{"term": {"source_service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}},{"term": {"dest_service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_server_side","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1000,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"component_ids": {"terms": {"field": "component_ids","size": 10,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"}}}}}
}

2、对特定时间范围内的服务间关系数据进行聚合分析

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"bool": {"should": [{"term": {"source_service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}},{"term": {"dest_service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_client_side","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1000,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"component_ids": {"terms": {"field": "component_ids","size": 10,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"}}}}}
}

3、统计服务下的实例流量

{"size": 5000,"query": {"bool": {"must": [{"range": {"last_ping": {"from": 202411221112,"to": null,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"term": {"service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1","boost": 1.0}}},{"term": {"metric_table": {"value": "instance_traffic","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}}
}

4、统计服务下的端点流量

{"size": 20,"query": {"bool": {"must": [{"term": {"service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1","boost": 1.0}}},{"term": {"metric_table": {"value": "endpoint_traffic","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}}
}

5、查询标签数据

{"query": {"bool": {"must": [{"term": {"tag_type": {"value": "TRACE","boost": 1.0}}},{"term": {"metric_table": {"value": "tag_autocomplete","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"tag_key": {"terms": {"field": "tag_key","size": 100,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"order": [{"_count": "desc"},{"_key": "asc"}]}}}
}

6、统计服务流量

{"size": 5000,"query": {"bool": {"must": [{"term": {"layer": {"value": 2,"boost": 1.0}}},{"term": {"metric_table": {"value": "service_traffic","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}}
}

7、计算服务间的服务每分钟调用次数

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["MTkyLjE2OC4zMC4xOjkwOTI7MTkyLjE2OC4zMC4zOjkwOTI=.1-c2VydmljZTo6dGVuZGF0YS1jb3JwLXNlcnZpY2U=.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_server_cpm","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

8、计算服务间的服务响应时间

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS1iaXpyLXNlcnZpY2U=.1-c2VydmljZTo6dGVuZGF0YS1nbG9jby1zZXJ2aWNl.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_server_resp_time","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

9、计算服务间的服务客户端响应时间

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS1tY3Mtc2VydmljZQ==.1-MTkyLjE2OC4zMC4xOjkwOTI7MTkyLjE2OC4zMC4zOjkwOTI=.0"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_client_resp_time","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

10、计算服务间的客户端每分钟调用次数

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS10cmFuc2xhdGlvbi1zZXJ2aWNl.1-YXBpLnRyYW5zbGF0b3IuYXp1cmUuY246NDQz.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_relation_client_cpm","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

11、计算服务响应时间service_resp_time

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS1tY3Mtc2VydmljZQ==.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_resp_time","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

12、计算服务级别协议的成功百分比service_sla

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS1vcGVuYXBpLWdhdGV3YXktc2VydmljZQ==.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_sla","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"percentage": {"avg": {"field": "percentage"}}}}}
}

13、计算服务每分钟请求数service_cpm

{"size": 0,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"terms": {"entity_id": ["c2VydmljZTo6dGVuZGF0YS1kZnMtc2VydmljZQ==.1"],"boost": 1.0}},{"term": {"metric_table": {"value": "service_cpm","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 1,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"_count": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

14、查询网络地址别名

{"size": 5000,"query": {"bool": {"must": [{"term": {"metric_table": {"value": "network_address_alias","boost": 1.0}}},{"range": {"last_update_time_bucket": {"from": 202411221132,"to": null,"include_lower": true,"include_upper": true,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}}
}

15、检索 service为service::tendata-contact-service的事件列表

{"from": 0,"size": 20,"query": {"bool": {"must": [{"term": {"metric_table": {"value": "events","boost": 1.0}}},{"term": {"service": {"value": "service::tendata-contact-service","boost": 1.0}}},{"range": {"start_time": {"from": 1732245120000,"to": null,"include_lower": false,"include_upper": true,"boost": 1.0}}},{"range": {"end_time": {"from": null,"to": 1732246980000,"include_lower": true,"include_upper": false,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"start_time": {"order": "desc"}}]
}

16、分页获取特定时间段内特定服务指标数据,并按时间戳排序

{"from": 0,"size": 15,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 20241122111200,"to": 20241122114259,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"term": {"service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1tZXNzYWdlLXNlcnZpY2U=.1","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"timestamp": {"order": "desc"}}]
}

17、根据传递的id查询端点信息

{"size": 156,"query": {"ids": {"values": ["endpoint_traffic_c2VydmljZTo6dGVuZGF0YS1nYXRld2F5LXNlcnZpY2U=.1_L2luc2lnaHQtc2VhcmNoL3YxL3Byb2dyYW1tZXMvMjkyNTcvbWFya2V0LWNvdW50ZXJwYXJ0eS1hcmVh","endpoint_traffic_c2VydmljZTo6dGVuZGF0YS1nYXRld2F5LXNlcnZpY2U=.1_L2NvcnAvdjIvY29tcGFuaWVzLzEwYzdkMWVjYTY4NTE0NDQ1NzQ5OWVkZTJkZTQxY2I1L3JlZnJlc2gvcmVzdWx0"],"boost": 1.0}}
}

18、查询某个服务的每分钟请求次数最多的10个接口

{"query": {"bool": {"must": [{"term": {"metric_table": {"value": "endpoint_cpm","boost": 1.0}}},{"terms": {"service_id": ["c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1"],"boost": 1.0}},{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 10,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"value": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

19、查询某个服务的响应时间最大的10个接口

{"query": {"bool": {"must": [{"term": {"metric_table": {"value": "endpoint_resp_time","boost": 1.0}}},{"terms": {"service_id": ["c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1"],"boost": 1.0}},{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 10,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"value": "desc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"value": {"avg": {"field": "value"}}}}}
}

20、查询某个服务的指定时间范围内成功率最小的10个接口

{"query": {"bool": {"must": [{"term": {"metric_table": {"value": "endpoint_sla","boost": 1.0}}},{"terms": {"service_id": ["c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1"],"boost": 1.0}},{"range": {"time_bucket": {"from": 202411221112,"to": 202411221142,"include_lower": true,"include_upper": true,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"aggregations": {"entity_id": {"terms": {"field": "entity_id","size": 10,"min_doc_count": 1,"shard_min_doc_count": 0,"show_term_doc_count_error": false,"execution_hint": "map","order": [{"percentage": "asc"},{"_key": "asc"}],"collect_mode": "breadth_first"},"aggregations": {"percentage": {"avg": {"field": "percentage"}}}}}
}

21、查询标签信息

{"size": 12,"query": {"ids": {"values": ["tag_autocomplete_20241122_TRACE_db.instance_[im_moldova-2024, im_moldova-2022, im_moldova-2023, im_moldova-2021]","tag_autocomplete_20241122_TRACE_db.instance_[a04b2a53a6d946ad9fe525cd1ab2646a_alias]","tag_autocomplete_20241122_TRACE_db.instance_[im_maritime_silk_bol-2022, im_maritime_silk_bol-2023, im_maritime_silk_bol-2021, im_maritime_silk_bol-2024]"],"boost": 1.0}}
}

查询sw_records-all索引

1、查询优化任务列表

{"size": 200,"query": {"bool": {"must": [{"term": {"record_table": {"value": "profile_task","boost": 1.0}}},{"range": {"time_bucket": {"from": 202411221137,"to": null,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"range": {"time_bucket": {"from": null,"to": 202411221147,"include_lower": true,"include_upper": true,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"start_time": {"order": "desc"}}]
}

2、查询sw_records-all与特定跨度(Span)关联的事件记录

{"size": 100,"query": {"bool": {"must": [{"term": {"record_table": {"value": "span_attached_event_record","boost": 1.0}}},{"terms": {"related_trace_id": ["ab80cf2b85fa4f3e9baabd114f3b909e.98.17322469467401053"],"boost": 1.0}},{"terms": {"trace_ref_type": [0],"boost": 1.0}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"start_time_second": {"order": "asc"}},{"start_time_nanos": {"order": "asc"}}]
}

3、检索ebpf优化任务

{"size": 200,"query": {"bool": {"must": [{"term": {"record_table": {"value": "ebpf_profiling_task","boost": 1.0}}},{"term": {"service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}},{"terms": {"target_type": [1,2],"boost": 1.0}},{"term": {"trigger_type": {"value": 1,"boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"create_time": {"order": "desc"}}]
}

4、查询性能任务日志

{"size": 10000,"query": {"bool": {"must": [{"term": {"record_table": {"value": "profile_task_log","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"operation_time": {"order": "desc"}}]
}

查询sw_segment索引

1、查询某个服务的流量

{"size": 1,"query": {"ids": {"values": ["service_traffic_MTkyLjE2OC4xMS4xMDo1Njcy.15"],"boost": 1.0}}
}

2、查询某个调用链信息

{"size": 200,"query": {"term": {"trace_id": {"value": "ab80cf2b85fa4f3e9baabd114f3b909e.98.17322469467401053","boost": 1.0}}}
}

3、分页获取特定时间段内特定服务调用数据,并按开始时间排序

{"from": 0,"size": 20,"query": {"bool": {"must": [{"range": {"time_bucket": {"from": 20241122111200,"to": 20241122114259,"include_lower": true,"include_upper": true,"boost": 1.0}}},{"term": {"service_id": {"value": "c2VydmljZTo6dGVuZGF0YS1jb250YWN0LXNlcnZpY2U=.1","boost": 1.0}}}],"adjust_pure_negative": true,"boost": 1.0}},"sort": [{"start_time": {"order": "desc"}}]
}


http://www.ppmy.cn/ops/137006.html

相关文章

刷题——字符串中的单词数(力扣)

文章目录 一、读题二、思路问题1:解决思路:分割方法:方法1、方法2、 三、代码实现:方法1、方法2、 一、读题 题目来源:https://leetcode.cn/problems/number-of-segments-in-a-string/description/ 首先看例子&#xf…

【数据结构实战篇】用C语言实现你的私有队列

🏝️专栏:【数据结构实战篇】 🌅主页:f狐o狸x 在前面的文章中我们用C语言实现了栈的数据结构,本期内容我们将实现队列的数据结构 一、队列的概念 队列:只允许在一端进行插入数据操作,在另一端…

我谈离散傅里叶变换的补零

有限序列的零延拓——零延拓不会改变离散傅里叶变换的形状的续篇。 L点序列可以做N点傅里叶变换,当 L ⩽ N L\leqslant N L⩽N时不会产生混叠。这部分内容在Rafael Gonzalez和Richard Woods所著的《数字图像处理》完全没有提到。 补零是序列末尾补零,不…

簡單易懂:如何在Windows系統中修改IP地址?

無論是為了連接到一個新的網路,還是為了解決網路連接問題,修改IP地址都是一個常見的操作。本文將詳細介紹如何在Windows系統中修改IP地址,包括靜態IP地址的設置和動態IP地址的獲取。 IP地址是什麼? IP地址是互聯網協議地址的簡稱…

nodejs第三方库sharp对图片的操作生成新图片、压缩、添加文字水印及图片水印等

Sharp是一个基于libvips的高性能Node.js图像处理库,它提供了广泛的功能,包括调整大小、裁剪、旋转、格式转换等。Sharp可以处理多种图像格式,并且能够高效地转换图像格式。 相关说明及用法看:https://sharp.nodejs.cn/ 安装&#…

k8s集群增加nfs-subdir-external-provisioner存储类

文章目录 前言一、版本信息二、本机安装nfs组件包三、下载nfs-subdir-external-provisioner配置文件并进行配置1.下载文件2.修改配置 三、进行部署备注:关于镜像无法拉取问题的处理 前言 手里的一台服务器搭建一个单点的k8s集群,然后在本机上使用nfs-su…

001 MATLAB介绍

前言: 软件获取渠道有很多,难点也就是百度网盘下载慢; 线上版本每月有时间限制。 01 MATLAB介绍 性质: MATLAB即Matrix Laboratory 矩阵实验室的意思,是功能强大的计算机高级语言, 已广泛应用于各学科研究部门、…

力扣-位运算-4【算法学习day.44】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…