量子感知机

ops/2024/11/25 10:53:28/

        神经网络类似于人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题,是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子神经计算的概念,开创了该领域的先河。随后又相继 出现了多种量子神经计算模型,包括量子感知机、量子神经网络、量子受限玻尔兹曼机等。近年来,量子生成对抗网络、量子卷积神经网络等量子机器学习模型。

        量子感知机算法,这与经典感知机的方法类似,在量子感知机中,规定输入样本x_{i}和权重系数w的元素只能为+-1。经典感知机中通过激活函数的输出判断输入样本是否被正确分类。而在量子算法中通过阈值\Theta将式写为

                                               y_{i}=\left\{\begin{matrix} 0, & |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |\geq \Theta\\ 1, & |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |\leq \Theta\\ \end{matrix}\right.                                             (1)

 

1.|\sum_{j=0}^{M-1}\omega _{j}x_{ji} |的计算方法 

        |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |=|x_{i}^{T}\omega |,即x_{i}\omega的内积的模。在量子计算中,样本信息x_{i}和权重系数\omega存储在量子态中,归一化之后,x_{i}\omega的量子态形式为

                                                          |x_{i}\rangle =\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle                                               (2)

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​                          |w\rangle =\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}w_{j} |j\rangle                                                (3)

这里系数取\frac{1}{\sqrt{M}}是因为量子算法中x_{i}\omega内积的模为\frac{1}{M}|\sum_{j=0}^{M-1}\omega _{j}x_{ji} |

        假设存在酉算子U_{x_{i}}U_{w}能够完成如下变换:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          ​​​​​​​       U_{x_{i}}|0\rangle^{\bigotimes }=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle=|\Psi _{1i}\rangle                                (4)

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​           ​​​​​​​       U_{x_{i}}|1\rangle^{\bigotimes }=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}w_{i} |j\rangle=|\Psi _{2}\rangle                                 (5)

式子中:m=logM

      则有 U^{-1}_{x_{i}}|\Psi _{2}\rangle=|1\rangle^{\bigotimes M },将|1\rangle^{\bigotimes M }写成十进制的形式有,U^{-1}_{x_{i}}|\Psi _{2}\rangle=|M-1\rangle

首先制备初态|0\rangle^{\bigotimes (m+1) },其中前m个量子比特用于存储输入样本向量x_{i}和权重\omega,最后一位是辅助量子比特,用于存储最终结果。

        第一步:使用酉算子U_{x_{i}}作用于前m个量子比特|0\rangle^{\bigotimes m },得到量子态

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​         ​​​​​​​               |\Psi _{1i}\rangle=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle                                               (6)

        第二步:使用U_{w}^{-1}作用于|\Psi _{1i}\rangle得到量子态

                                                       |\Psi _{3\rangle=}U^{-1}_{x_{i}}|\Psi _{1i}\rangle=\sum_{j=0}^{M-1}c_{j} |j\rangle                                       (7)

式子中:\sum_{j=0}^{M-1}c_{j}^{2}=1

则                              \langle \Psi _{1i}|\Psi _{2}\rangle=\langle \Psi _{1i}|U_{w}U_{w}^{-1}|\Psi _{2}\rangle=\langle \Psi _{3}|M-1\rangle=c_{M-1}                  (8)              

#量子感知机
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, transpile
from qiskit_aer import Aer
import numpy as np
from qiskit.visualization import plot_histogramfrom math import pi
from qiskit.visualization import plot_histogramcircuit = QuantumCircuit(5,5)
#两控制位的受控z门
def ccz():circuit=QuantumCircuit(2)circuit.cz(0,1)circuit= circuit.to_gate()circuit.name = "ccz"c_U = circuit.control()return c_U
#两控制位的受控z门(与前一个的控制位不同)
def ccz1():circuit=QuantumCircuit(3)circuit.cz(0,2)circuit= circuit.to_gate()circuit.name = "ccz1"c_U = circuit.control()return c_U
#三控制位的受控z门
def cccz():circuit=QuantumCircuit(3)circuit.append(ccz(),[0]+[m+1 for m in range(2)])circuit= circuit.to_gate()circuit.name = "cccz"c_U = circuit.control()return c_U
#三控制位的受控x门
def cccx():circuit=QuantumCircuit(3)circuit.ccx(0,1,2)circuit= circuit.to_gate()circuit.name = "cccx"c_U = circuit.control()return c_U
#四控制位的受控x门
def ccccx():circuit=QuantumCircuit(4)circuit.append(cccx(),[0]+[m+1 for m in range(3)])circuit= circuit.to_gate()circuit.name = "ccccx"c_U = circuit.control()return c_U
#U_i
for i in range(4):circuit.h(i)
for i in range(3):circuit.z(i)
circuit.cz(1,2)
circuit.cz(0,2)
circuit.cz(0,1)
circuit.append(ccz(),[0]+[m+1 for m in range(2)])
#U_w
circuit.z(1)
circuit.z(2)
circuit.cz(1,3)
circuit.cz(0,2)
circuit.cz(0,1)
circuit.append(ccz(),[1]+[m+2 for m in range(2)])
circuit.append(ccz1(),[0]+[m+1 for m in range(3)])
circuit.append(cccz(),[0]+[m+1 for m in range(3)])
for i in range(4):circuit.h(i)
for i in range(4):circuit.x(i)
#将内积提取到辅助量子比特上
circuit.append(ccccx(),[0]+[m+1 for m in range(4)])
circuit.barrier()
circuit.measure(4,4)
circuit.draw(output='mpl', plot_barriers=False)

# Set up the backend
backend = Aer.get_backend('qasm_simulator')
# Transpile the circuit for the simulator
transpiled_circuit = transpile(circuit, backend)
# Run the transpiled circuit
job = backend.run(transpiled_circuit, shots=100000)
sim_result = job.result()
# Get and plot the results
measurement_result = sim_result.get_counts(circuit)
plot_histogram(measurement_result)

 

 1的概率为0.1376,开根号为0.370944,小于0.5,属于C_{2}


http://www.ppmy.cn/ops/136545.html

相关文章

2024年北京海淀区中小学信息学竞赛(初赛)试题

来源:2024年北京海淀区中小学信息学竞赛(初赛)试题 | 6547网 2024年北京海淀区中小学信息学竞赛(初赛)试题 题目总数:24 总分数:100 单项选择题(共有 15 道小题,每道小题3分&am…

【Qt】控件LineEdit

1.QcalendarWidget 获取点击的时间,显示在lineedit上 2.QLineEdit 1.QLineEdit设置内部提示 ui->name->setPlaceholderText("请输入名字");//设置内部提示2.设置快捷删除 ui->name->setClearButtonEnabled(true);//设置一键清除3.设置…

彻底理解Redis的过期策略

一.由来 因为现在Redis的使用是非常普遍的,Redis是基于内存的数据存储系统,而内存相比于早些年而言,还是便宜了很多,但是相比硬盘而言还是最很多,因此提高Redis里面的内存利用率是非常重要,而Redis的过期策…

Vue3 生命周期钩子详解

Vue3 生命周期钩子详解 简介 Vue3的生命周期钩子让我们能够在组件的不同阶段执行自定义代码。与Vue2相比,Vue3的生命周期钩子在Composition API中有了新的使用方式,但整体概念保持一致。 基础知识 Vue3中的生命周期钩子可以通过两种方式使用&#xf…

C程序设计语言 第二章 类型、运算符与表达式

变量和常量是程序处理的两种基本数据对象。声明语句说明变量的名字及类型,也可以指定变量的初值。运算符指定将要进行的操作。表达式则把变量与常量组合起来生成新的值。对象的类型决定该对象可取值的集合以及可以对该对象执行的操作。本章将详细讲述这些内容。 AN…

C指针之舞——指针探秘之旅(2)

❤博客主页:折枝寄北-CSDN博客 ❤专栏:C语言学习专栏 在上一篇博客文章:C指针之舞——指针探秘之旅-CSDN博客中,我们学习了字符指针,指针数组,数组指针,数组传参和指针传参等内容,…

idea添加版权信息

1、添加Copyright Profiles 打开Settings -> Editor -> Copyright -> Copyright Profiles -> 新增 Copyright (c) 【你的版权信息】 【开始年份】-${today.year}. All rights reserved.如: Copyright (c) by cwp 2024-${today.year}. All rights rese…

链表的介绍与单链表的实现

1.链表的介绍 链表分为单链表与双链表。链表和顺序表一样,均属于顺序表,因此链表的逻辑结构是线性的。链表在内存中的存储方式是不一定连续的(因此链表的物理结构不一定是线性的),也不一定是按照顺序存储。 2、节点…