【大数据学习 | flume】flume的概述与组件的介绍

ops/2024/11/19 2:50:49/

1. flume概述

 Flume是cloudera(CDH版本的hadoop) 开发的一个分布式、可靠、高可用的海量日志收集系统。它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到HDFS、Hbase,简单来说flume就是收集日志的

Flume两个版本区别:

​ 1)Flume-og

​ 2)Flume-ng

2. flume的结构模型

​ Flume 运行的核心是 Agent,Flume以agent为最小的独立运行单位,含有三个核心组件,分别是source、 channel、 sink,通过这些组件, Event 可以从一个地方流向另一个地方,如下图所示。

Source:

​ 从Client上收集数据对数据进行格式化,以Event(事件)的形式传递给单个或多个Channel。

Channel:

​ 短暂的存储容器,将从Source接收到的Event进行缓存直到被Sink消费掉,Channel是Source和Sink之间的桥梁,Channal是一个完整的事务,能保证了数据在收发时的一致性,并且一个Channel可以同时和任意数量的Source和Sink建立连接。

Sink:

​ 从Channel中消费数据(Event)并传递到存储容器(Hbase、HDFS)或其他的Source中。

工作流程:

​ 把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。

​ 为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume再删除自己缓存的数据。

什么是Event?

​ 1)event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录。

​ 2)event也是事务的基本单位

​ 3)event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。

Agent:

​ Flume以 Agent 为最小的独立运行单元,Agent 依赖于 JVM ,一个 Agent 的运行就伴随一个 JVM 实例的产生。

​ 一台机器可以运行多个Agent,一个Agent中可以包含多个Source、Channel。Sink。

3. flume各组件介绍

​ Flume提供了大量内置的Source、Channel和Sink类型,不同类型的Source,Channel和Sink可以自由组合.组合方式基于用户设置的配置文件。

3.1 source组件

Source是数据的收集端负责将数据捕获后进行特殊的格式化将数据封装到事件(event) 里,然后将事件推入Channel中,Flume提供了各种source的实现,包括Avro Source、Exce Source、Spooling Directory Source、NetCat Source、Syslog Source、Syslog TCP Source、Syslog UDP Source、HTTP Source、HDFS Source,etc。如果内置的Source无法满足需要, Flume还支持自定义Source。

3.2 channel组件

​ Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件,Flume对于Channel,则提供了Memory Channel、JDBC Chanel、File Channel,etc。

​ MemoryChannel可以实现高速的吞吐,但是无法保证数据的完整性。

​ MemoryRecoverChannel在官方文档的建议上已经建义使用FileChannel来替换。

​ FileChannel保证数据的完整性与一致性。

3.3 sink组件

​ Flume Sink取出Channel中的数据,进行相应的存储文件系统,数据库,或者提交到远程服务器。Flume也提供了各种sink的实现,包括HDFS sink、Logger sink、Avro sink、File Roll sink、Null sink、HBase sink,etc。

​ Flume Sink在设置存储数据时,可以向文件系统中,数据库中,hadoop中储数据,在日志数据较少时,可以将数据存储在文件系中,并且设定一定的时间间隔保存数据,在日志数据较多时,可以将相应的日志数据存储到Hadoop中,便于日后进行相应的数据分析。

4. 官方案例

监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。

其中:

Source:netcat

Sink:logger

Channel:memory

1)从整体上描述代理agent中sources、sinks、channels所涉及到的组件

# 配置Agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

2)分别配置三个组件的具体实现

# 配置Source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.142.160
a1.sources.r1.port = 22222
# 配置Sink
a1.sinks.k1.type = logger
# 配置Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

3)将三个组件进行连接

# 将三者连接
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

4)启动flume agent a1 服务端

# 每个人用自己的,注意给自己用户权限 /data/xxx/flume
flume-ng agent -n a1 -c /opt/module/apache-flume-1.9.0-bin/conf/  -f ./example.agent -Dflume.root.logger=INFO,console

参数说明:

-n :指定agent名称(与配置文件中代理的名字相同)
-c :指定flume中配置文件的目录
-f :指定配置文件
-Dflume.root.logger=DEBUG,console :设置日志等级

5)使用telnet发送数据

在虚拟机里发送命令

telnet  192.168.142.160  22222
aa bb cc

6)在控制台上查看flume收集到的日志数据


http://www.ppmy.cn/ops/134845.html

相关文章

python核心语法

目录 核⼼语法第⼀节 变量0.变量名规则1.下⾯这些都是不合法的变量名2.关键字3.变量赋值4.变量的销毁 第⼆节 数据类型0.数值1.字符串2.布尔值(boolean, bool)3.空值 None 核⼼语法 第⼀节 变量 变量的定义变量就是可变的量,对于⼀些有可能会经常变化的数据&#…

java八股-jvm入门-程序计数器,堆,元空间,虚拟机栈,本地方法栈,类加载器,双亲委派,类加载执行过程

文章目录 PC Register堆虚拟机栈方法区(Metaspace元空间双亲委派机制类加载器 类装载的执行过程 PC Register 程序计数器(Program Counter Register)是 Java 虚拟机(JVM)中的一个组件,它在 JVM 的内存模型中扮演着非常…

Uni-APP+Vue3+鸿蒙 开发菜鸟流程

参考文档 文档中心 运行和发行 | uni-app官网 AppGallery Connect DCloud开发者中心 环境要求 Vue3jdk 17 Java Downloads | Oracle 中国 【鸿蒙开发工具内置jdk17,本地不使用17会报jdk版本不一致问题】 开发工具 HBuilderDevEco Studio【目前只下载这一个就…

SQL注入注入方式(大纲)

SQL注入注入方式(大纲) 常规注入 通常没有任何过滤,直接把参数存放到SQL语句中。 宽字节注入 GBK 编码 两个字节表示一个字符ASCII 编码 一个字节表示一个字符MYSQL默认字节集是GBK等宽字节字符集 原理: 设置MySQL时错误配置…

java xml 文本解析

示例文本 <Message><MessageName>time_request</MessageName><Timestamp>20220217165432906359</Timestamp><Body><EQPID>CMMAB01-DTP01</EQPID></Body> </Message>示例代码 import org.w3c.dom.Document; impo…

C#编程:优化【性别和成绩名次】均衡分班

标题 C#编程&#xff0c;实现&#xff08;男女和成绩&#xff09;均衡分班 正文 上一篇用ExceVBA完成的分班&#xff0c;请看文章 ExcelVBA代码实现按性别和成绩名次均衡分班 网友提出问题用VbA对班级学生随机分组&#xff0c;考虑男女人数和考试成绩均衡 一、需求分析 用户需要…

基于BERT的情感分析

基于BERT的情感分析 1. 项目背景 情感分析&#xff08;Sentiment Analysis&#xff09;是自然语言处理的重要应用之一&#xff0c;用于判断文本的情感倾向&#xff0c;如正面、负面或中性。随着深度学习的发展&#xff0c;预训练语言模型如BERT在各种自然语言处理任务中取得了…

Flink Source 详解

Flink Source 详解 原文 flip-27 FLIP-27 介绍了新版本Source 接口定义及架构 相比于SourceFunction&#xff0c;新版本的Source更具灵活性&#xff0c;原因是将“splits数据获取”与真“正数据获取”逻辑进行了分离 重要部件 Source 作为工厂类&#xff0c;会创建以下两…