数据分析编程:SQL,Python or SPL?

ops/2024/11/18 20:33:27/

Talk is cheap. Let’s show the code

1. 计算用户会话次数

用户行为数据表

useridaction_typeaction_time
U1059login2023-12-01 18:00:10
U1092login2023-12-01 18:00:17
U1069login2023-12-01 18:00:22

10 分钟没有任何动作或退出后 5 分钟没有登录则认为会话结束,计算各用户的会话次数。

SPL

A
1=file(“session_data.csv”).import@tc()
2=A1.group(userid;~.group@i((action_type[-1]==“exit”&&interval@s(action_time[-1],action_time)>300)||(interval@s(action_time[-1],action_time)>600)).len():session_num)

SQL

sql">WITH login_data AS (SELECT userid, action_type, action_time,LAG(action_time) OVER (PARTITION BY userid ORDER BY action_time) AS prev_time,LAG(action_type) OVER (PARTITION BY userid ORDER BY action_time) AS prev_actionFROM session_data)
SELECT userid, COUNT(*) AS session_count
FROM (SELECT userid, action_type, action_time, prev_time, prev_action,CASEWHEN prev_time IS NULL OR (action_time - prev_time) > 600OR (prev_action = 'exit' AND (action_time - prev_time) > 300)THEN 1ELSE 0END AS is_new_sessionFROM login_data)
WHERE is_new_session = 1
GROUP BY userid;

Python

python">login_data = pd.read_csv("session_data.csv")
login_data['action_time'] = pd.to_datetime(login_data['action_time'])
grouped = login_data.groupby("userid")
session_count = {}
for uid, sub_df in grouped:session_count[uid] = 0start_index = 0for i in range(1, len(sub_df)):current = sub_df.iloc[i]last = sub_df.iloc[start_index]last_action = last['action_type']if (current["action_time"] - last["action_time"]).seconds > 600 or \(last_action=="exit" and (current["action_time"] - last["action_time"]).seconds > 300):session_count[uid] += 1start_index = isession_count[uid] += 1
session_cnt = pd.DataFrame(list(session_count.items()), columns=['UID', 'session_count'])

2. 1 分钟内连续得分 3 次的球员

球赛得分表

teamplayerplay_timescore
AA32023-12-31 09:00:092
BB12023-12-31 09:00:243
AA52023-12-31 09:00:572

SPL

A
1=file(“ball_game.csv”).import@tc()
2=A1.group@o(player).select(~.len()>2&&(~.pselect(#>2&&interval@s(play_time[-2],play_time)<60))).(player)

A2:group@o(),@o 选项是按顺序把相同球员分成一组,球员不同开始新的分组,然后筛选其中连续得分次数大于等于 3 次且有任意一个连续三次得分时间间隔小于 60 的分组,最后取出球员。

SQL

sql">WITH numbered_scores AS (SELECT team, player, play_time, score,ROW_NUMBER() OVER (ORDER BY play_time) AS rnFROM ball_game)
SELECT DISTINCT s1.player
FROM numbered_scores s1JOIN numbered_scores s2 ON s1.player = s2.player AND s1.rn = s2.rn - 1JOIN numbered_scores s3 ON s1.player = s3.player AND s1.rn = s3.rn - 2
WHERE (s3.play_time - s1.play_time) < 60 ;

Python

python">df = pd.read_csv("ball_game.csv")
df["play_time"] = pd.to_datetime(df["play_time"])
result_players = []
player = None
start_index = 0
consecutive_scores = 0
for i in range(len(df)-2):current = df.iloc[i]if player != current["player"]:player = current["player"]consecutive_scores = 1else:consecutive_scores += 1last2 = df.iloc[i-2] if i >=2 else Noneif consecutive_scores >= 3 and (current['play_time'] - last2['play_time']).seconds < 60:result_players.append(player)
result_players = list(set(result_players))

3. 每 7 天中连续三天活跃的用户数

用户登录表

iduseridts
14662017-01-07 18:24:55
24582017-01-07 18:25:18
34582017-01-07 18:26:21

SPL

A
1=file(“login_data.csv”).import@tc()
2=periods(date(A1.ts),date(A1.m(-1).ts))
3=A1.group(userid).(~.align(A2,date(ts)).(if(#<7,null,(cnt=~[-6:0].group@i(!~).max(count(~)),if(cnt>=3,1,0)))))
4=msum(A3).~.new(A2(#):dt,int(~):cont3_num).to(7,)

SQL

sql">WITH all_dates AS (SELECT DISTINCT TRUNC(ts) AS login_dateFROM login_data),
user_login_counts AS (SELECT userid, TRUNC(ts) AS login_date, (CASE WHEN COUNT(*)>=1 THEN 1 ELSE 0 END) AS login_countFROM login_dataGROUP BY userid, TRUNC(ts)),
whether_login AS (SELECT u.userid, ad.login_date, NVL(ulc.login_count, 0) AS login_countFROM all_dates adCROSS JOIN (SELECT DISTINCT useridFROM login_data) uLEFT JOIN user_login_counts ulcON u.userid = ulc.useridAND ad.login_date = ulc.login_dateORDER BY u.userid, ad.login_date),
whether_login_rn AS (SELECT userid,login_date,login_count,ROWNUM AS rn FROM whether_login),
whether_eq AS(SELECT userid,login_date,login_count,rn,(CASE WHEN LAG(login_count,1) OVER (ORDER BY rn)= login_count AND login_count =1 AND LAG(userid,1) OVER (ORDER BY rn)=userid THEN 0 ELSE 1 END) AS wether_e FROM whether_login_rn
),
numbered_sequence AS (SELECT userid,login_date,login_count,rn, wether_e,SUM(wether_e) OVER (ORDER BY rn) AS labFROM whether_eq),
consecutive_logins_num AS (SELECT userid,login_date,login_count,rn, wether_e,lab,(SELECT (CASE WHEN max(COUNT(*))<3 THEN 0 ELSE 1 END)FROM numbered_sequence bWHERE b.rn BETWEEN a.rn - 6 AND a.rnAND b.userid=a.useridGROUP BY b. lab) AS cntFROM numbered_sequence a)
SELECT login_date,SUM(cnt) AS cont3_num
FROM consecutive_logins_num
WHERE login_date>=(SELECT MIN(login_date) FROM all_dates)+6
GROUP BY login_date
ORDER BY login_date;

Python

python">df = pd.read_csv("login_data.csv")
df["ts"] = pd.to_datetime(df["ts"]).dt.date
grouped = df.groupby("userid")
aligned_dates = pd.date_range(start=df["ts"].min(), end=df["ts"].max(), freq='D')
user_date_wether_con3days = []
for uid, group in grouped:group = group.drop_duplicates('ts')aligned_group = group.set_index("ts").reindex(aligned_dates)consecutive_logins = aligned_group.rolling(window=7)n = 0date_wether_con3days = []for r in consecutive_logins:n += 1if n<7:continueelse:ds = r['userid'].isna().cumsum()cont_login_times = r.groupby(ds).userid.count().max()wether_cont3days = 1 if cont_login_times>=3 else 0date_wether_con3days.append(wether_cont3days)user_date_wether_con3days.append(date_wether_con3days)
arr = np.array(user_date_wether_con3days)
day7_cont3num = np.sum(arr,axis=0)
result = pd.DataFrame({'dt':aligned_dates[6:],'cont3_num':day7_cont3num})

4. 每天新用户的次日留存率

用户登录表

iduseridts
14662017-01-07 18:24:55
24582017-01-07 18:25:18
34582017-01-07 18:26:21

SPL

A
1=file(“login_data.csv”).import@tc()
2=A1.group(userid;fst=date(ts):fst_login,~.(date(ts)).pos(fst+1)>0:wether_sec_login)
3=A2.groups(fst_login+1:dt;count(wether_sec_login)/count(1):ret_rate)

A2:按用户分组,记录首次登录日期并查看第二天是否登录
A3:按第二天登录日期统计次日留存率

SQL

sql">WITH first_login AS (SELECT userid, MIN(TRUNC(ts)) AS first_login_dateFROM login_dataGROUP BY userid),
next_day_login AS (SELECT DISTINCT(fl.userid), fl.first_login_date, TRUNC(ld.ts) AS next_day_login_dateFROM first_login flLEFT JOIN login_data ld ON fl.userid = ld.useridWHERE TRUNC(ld.ts) = fl.first_login_date + 1),
day_new_users AS(SELECT first_login_date,COUNT(*) AS new_user_numFROM first_loginGROUP BY first_login_date),
next_new_users AS(SELECT next_day_login_date, COUNT(*) AS next_user_numFROM next_day_loginGROUP BY next_day_login_date),
all_date AS(SELECT DISTINCT(TRUNC(ts)) AS login_dateFROM login_data)
SELECT all_date.login_date+1 AS dt,dn. new_user_num,nn. next_user_num,(CASE WHEN nn. next_day_login_date IS NULL THEN 0 ELSE nn.next_user_num END)/dn.new_user_num AS ret_rate
FROM all_dateJOIN day_new_users dn ON all_date.login_date=dn.first_login_dateLEFT JOIN next_new_users nn ON dn.first_login_date+1=nn. next_day_login_date
ORDER BY all_date.login_date;

Python

python">df = pd.read_csv("login_data.csv")
df["ts"] = pd.to_datetime(df["ts"]).dt.date
gp = df.groupby('userid')
row = []
for uid,g in gp:fst_dt = g.iloc[0].tssec_dt = fst_dt + pd.Timedelta(days=1)all_dt = g.ts.valueswether_sec_login = sec_dt in all_dtrow.append([uid,fst_dt,sec_dt,wether_sec_login])
user_wether_ret_df = pd.DataFrame(row,columns=['userid','fst_dt','sec_dt','wether_sec_login'])
result = user_wether_ret_df.groupby('sec_dt').apply(lambda x:x['wether_sec_login'].sum()/len(x))

5. 股价高于前后 5 天时当天的涨幅

股价信息表

STOCKIDDATECLOSING
622015-01-058.91
622015-01-068.31
622015-01-077.6

SPL

A
1=file(“STOCK.csv”).import@tc()
2=lth=A1.len(),A1.pselect@a(#>4&&#<=A1.len()-4&&CLOSING>max(CLOSING[-4:-1])&&CLOSING>max(CLOSING[1:4]))
3=A1.calc(A2,CLOSING/CLOSING[-1]-1)

SQL

sql">SELECT closing/closing_pre-1 AS raise
FROM(SELECT dt, closing, ROWNUM AS rn,MAX(closing) OVER (ORDER BY dt ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS max_pre,MAX(closing) OVER (ORDER BY dt ROWS BETWEEN 1 FOLLOWING AND 5 FOLLOWING) AS max_suf,LAG(closing,1) OVER (ORDER BY dt) AS closing_preFROM stock)
WHERE rn>5 AND rn<=(select count(*) FROM stock)-5AND CLOSING>max_pre  AND CLOSING>max_suf;

Python

python">stock_price_df = pd.read_csv('STOCK.csv')
price_increase_list = []
for i in range(5, len(stock_price_df)-5):if stock_price_df['CLOSING'][i] > max(stock_price_df['CLOSING'][i-5:i]) and \stock_price_df['CLOSING'][i] > max(stock_price_df['CLOSING'][i+1:i+6]):price_increase = stock_price_df['CLOSING'][i] / stock_price_df['CLOSING'][i-1]-1price_increase_list.append(price_increase)
result = price_increase_list

到底好不好用下载试试就知道了~~免费下载试用


http://www.ppmy.cn/ops/134784.html

相关文章

【Mysql】Mysql函数(上)

1、概述 在Mysql中&#xff0c;为了提高代码重用性和隐藏实现细节&#xff0c;Mysql提供了很多函数。函数可以理解为封装好的模块代码。 2、分类 在Mysql中&#xff0c;函数非常多&#xff0c;主要可以分为以下几类&#xff1a; &#xff08;1&#xff09;聚合函数 &#xf…

4.2 Android NDK 基础概念

1 JavaVM和JNIEnv JNI 定义了两个关键数据结构&#xff0c;JavaVM和JNIEnv。这两者本质上都是指向函数表指针的指针。&#xff08;在 C 版本中&#xff0c;它们是具有指向函数表的指针的类&#xff0c;以及指向该表的每个 JNI 函数的成员函数。&#xff09;JavaVM提供了“调用接…

Java基础-组件及事件处理(中)

(创作不易&#xff0c;感谢有你&#xff0c;你的支持&#xff0c;就是我前行的最大动力&#xff0c;如果看完对你有帮助&#xff0c;请留下您的足迹&#xff09; 目录 BorderLayout布局管理器 说明&#xff1a; 示例&#xff1a; FlowLayout布局管理器 说明&#xff1a; …

pytorch中的transform用法

在 PyTorch 中&#xff0c;transform 主要用于数据预处理和数据增强&#xff0c;尤其在计算机视觉任务中&#xff0c;通过 torchvision.transforms 模块进行图像的变换。transforms 可以对图像进行一系列操作&#xff0c;如裁剪、旋转、缩放、归一化等&#xff0c;以增强数据集…

《InsCode AI IDE:编程新时代的引领者》

《InsCode AI IDE&#xff1a;编程新时代的引领者》 一、InsCode AI IDE 的诞生与亮相二、独特功能与优势&#xff08;一&#xff09;智能编程体验&#xff08;二&#xff09;多语言支持与功能迭代 三、实际应用与案例&#xff08;一&#xff09;游戏开发案例&#xff08;二&am…

安全见闻1-5

涵盖了编程语言、软件程序类型、操作系统、网络通讯、硬件设备、web前后端、脚本语言、病毒种类、服务器程序、人工智能等基本知识&#xff0c;有助于全面了解计算机科学和网络技术的各个方面。 安全见闻1 1.编程语言简要概述 C语言&#xff1a;面向过程&#xff0c;适用于系统…

Ceph 中PG与PGP的概述

在Ceph分布式存储系统中&#xff0c;PG&#xff08;Placement Group&#xff09;和PGP&#xff08;Placement Group for Placement purpose&#xff09;是两个至关重要的概念&#xff0c;它们共同决定了数据在集群中的分布和复制方式。以下是关于Ceph中PG和PGP关系的详细解释&a…

无人机:科技改变生活的神奇力量

无人机&#xff0c;作为一种高科技产品&#xff0c;已经在我们的生活中发挥着越来越重要的作用。从军事侦察到民用拍摄&#xff0c;从农业监测到物流配送&#xff0c;无人机的应用领域正在迅速扩展。本文将为您详细介绍无人机的多种应用&#xff0c;帮助您更全面地了解这一现代…