深度学习:交叉熵损失(Cross Entropy Loss)

ops/2024/11/1 4:05:35/

交叉熵损失(Cross Entropy Loss)

定义和数学表达

交叉熵损失是一种常用于评估概率分类模型性能的损失函数。它衡量的是模型预测的概率分布与真实分布之间的差异。交叉熵损失特别适用于分类任务中,尤其是多类分类问题。

数学上,交叉熵可以定义为:

[ $C(\mathbf{y}, \mathbf{\hat{y}}) = -\sum_{i=1}^{N} y_i \log(\hat{y}_i) $]

其中:

  • ( y \mathbf{y} y ) 是真实的标签分布,通常表示为one-hot编码向量。
  • ( $\mathbf{\hat{y}} $) 是模型预测的概率分布,由模型的输出层经过softmax函数转换得到。
  • ( N ) 是类别的总数。
  • ( y i y_i yi ) 是实际标签在第 ( i i i ) 类的值(0或1),( $\hat{y}_i KaTeX parse error: Can't use function '\)' in math mode at position 1: \̲)̲ 是预测为第 \( i$ ) 类的概率。
特性

交叉熵损失的核心特性包括:

  • 敏感性:这个函数对正确分类的概率非常敏感。如果实际类别的预测概率低(即接近于0),那么损失将会非常高。
  • 非对称性:这种损失在处理极端概率(接近0或1)时表现出明显的非对称性。特别是当预测概率趋近于0时,损失会迅速增加。
交叉熵与信息论

在信息论中,交叉熵衡量的是使用错误的概率分布(模型预测)来编码事件(实际发生的类别)所需的额外信息量。理想情况下,我们希望模型的预测分布尽可能接近真实分布,这样交叉熵就最小,表示预测非常准确。

实例解释

考虑一个简单的三类分类问题,比如预测一张图片是猫、狗还是鸟。假设对于一个实例,真实标签是狗,模型的预测输出(经过softmax)为:
[$ \hat{y} = [0.1, 0.7, 0.2]$ ]
对应的真实标签的one-hot编码为:
[$ y = [0, 1, 0]$ ]

交叉熵损失计算为:
[ $C(y, \hat{y}) = -(0 \times \log(0.1) + 1 \times \log(0.7) + 0 \times \log(0.2)) = -\log(0.7) $]
[ C ( y , y ^ ) ≈ 0.3567 C(y, \hat{y}) \approx 0.3567 C(y,y^)0.3567 ]

这表明模型对真实类别(狗)的预测概率为0.7时的损失为0.3567。如果模型对狗的预测概率更高,比如0.9,则损失会更低,显示为:
[ C ( y , y ^ ) = − log ⁡ ( 0.9 ) ≈ 0.1054 C(y, \hat{y}) = -\log(0.9) \approx 0.1054 C(y,y^)=log(0.9)0.1054 ]

结论

交叉熵损失函数是监督学习中非常重要的工具,特别是在处理分类问题时。它不仅提供了一种衡量模型性能的方法,还通过梯度下降等优化算法指导了模型的学习过程。优化交叉熵损失可以帮助模型更好地学习区分不同类别,提高分类的准确率。


http://www.ppmy.cn/ops/130028.html

相关文章

【K8S】kubernetes-dashboard.yaml

https://raw.githubusercontent.com/kubernetes/dashboard/v3.0.0-alpha0/charts/kubernetes-dashboard.yaml 以下链接的内容: 由于国内访问不了,找到一些方法下载了这个文件内容, 部署是mages 对象的镜像 WEB docker.io/kubernetesui/dash…

智能护栏碰撞监测终端:内蒙古高速的安全守护者

​ ​一、引言 ​ ​在内蒙古那辽阔的大地上,高速公路如动脉般纵横交错,是经济发展与人员流动的重要通道。而保障这些公路安全运行的关键因素之一,便是智能护栏碰撞监测终端。它以其卓越的性能,实时为公路安全保驾护航&…

vue封装信号强度

图标下载链接: https://pan.baidu.com/s/1828AidkCKU1KTkw1SvBwQg?pwd4k7n 共五格信号 信号5为绿色,信号4为绿色,信号3为黄色,信号2为黄色,信号1为红色,信号0为灰色。 子组件 /components/SignalStrength/index.vu…

SpringMVC实战(3):拓展

四、RESTFul风格设计和实战 4.1 RESTFul风格概述 4.1.1 RESTFul风格简介 RESTful(Representational State Transfer)是一种软件架构风格,用于设计网络应用程序和服务之间的通信。它是一种基于标准 HTTP 方法的简单和轻量级的通信协议&…

安全研究 | 不同编程语言中 IP 地址分类的不一致性

作为一名安全研究人员,我分析了不同编程语言中 IP 地址分类 的行为。最近,我注意到一些有趣的不一致性,特别是在循环地址和私有 IP 地址的处理上。在这篇文章中,我将分享我对此问题的观察和见解。 设置 我检查了多种编程语言&am…

如何应对PDF无法转换成其他格式?常见原因与解决方法解析

在日常工作中,PDF文件的格式转换是非常常见的操作,无论是转换为Word、Excel,还是其他格式,都会有一些方便的工具支持。然而,有时在转换PDF时可能会遇到无法转换的问题。这个时候,可以看看是不是以下几个原因…

vue3项目中引入阿里图标库

开篇 本篇的主题是在vue3项目中引入阿里图标库 步骤 注册阿里图标库账号(阿里图标),并创建项目 将图标加入项目中 将需要的图标先加入购物车,随后加入到项目中 生成项目代码 在项目中生成项目代码,便于后续复制到vue项目中 ## 在vue3项目…

高效集成聚水潭·奇门数据到MySQL的技术方案

聚水潭奇门数据集成到MySQL的技术案例分享 在本次技术案例中,我们将探讨如何通过轻易云数据集成平台,将聚水潭奇门的售后单数据高效、可靠地集成到MySQL数据库中。具体方案为“聚水潭-售后单-->BI虹盟-售后表”。这一过程不仅需要处理大量的数据&…