代码复现(五):GCPANet

ops/2024/10/20 0:21:33/

文章目录

  • net.py
    • 1.class Bottleneck:残差块
    • 2.class ResNet:特征提取
    • 3.class SRM:SR模块
    • 4.class FAM:FIA模块
    • 5.class CA:GCF模块
    • 6.class SA:HA模块
    • 7.class GCPANet:网络架构
  • train.py
  • test.py


  论文:Global Context-Aware Progressive Aggregation Network for Salient Object Detection
  论文链接:Global Context-Aware Progressive Aggregation Network for Salient Object Detection
  代码链接:Github

net.py

1.class Bottleneck:残差块

在这里插入图片描述
  class Bottleneck(nn.Module)用于实现残差块。

class Bottleneck(nn.Module):def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):#inplanes:输入通道数;planes:输出通道数;stride:步幅;downsample:下采样层;dilation:膨胀系数super(Bottleneck, self).__init__()#1×1卷积self.conv1      = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)self.bn1        = nn.BatchNorm2d(planes)#3×3卷积self.conv2      = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=(3*dilation-1)//2, bias=False, dilation=dilation)self.bn2        = nn.BatchNorm2d(planes)#1×1卷积self.conv3      = nn.Conv2d(planes, planes*4, kernel_size=1, bias=False)self.bn3        = nn.BatchNorm2d(planes*4)#下采样(若步幅不为1或输入通道数与目标通道数不匹配,则进行下采样)self.downsample = downsampledef forward(self, x):residual = x#1×1卷积out      = F.relu(self.bn1(self.conv1(x)), inplace=True)#3×3卷积out      = F.relu(self.bn2(self.conv2(out)), inplace=True)#1×1卷积out      = self.bn3(self.conv3(out))#若不能直接将x与特征残差连接,则需下采样if self.downsample is not None:residual = self.downsample(x)#残差连接return F.relu(out+residual, inplace=True)

2.class ResNet:特征提取

在这里插入图片描述
  GCPANet模型使用 R e s N e t 50 ResNet50 ResNet50作为特征提取器, R e s N e t 50 ResNet50 ResNet50共包含四个 B l o c k Block Block结构,每个 B l o c k Block Block中分别有3、4、6、3个 B o t t l e n e c k Bottleneck Bottleneck。整体结构如下:
在这里插入图片描述

python">class ResNet(nn.Module):def __init__(self):super(ResNet, self).__init__()#跟踪输入通道数self.inplanes = 64#conv1:7×7大小、输入通道3(RGB图像)、输出通道64、步长2、填充3self.conv1    = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1      = nn.BatchNorm2d(64)#第一个残差层,对应conv_2self.layer1   = self.make_layer( 64, 3, stride=1, dilation=1)#第二个残差层,对应conv_3self.layer2   = self.make_layer(128, 4, stride=2, dilation=1)#第三个残差层,对应conv_4self.layer3   = self.make_layer(256, 6, stride=2, dilation=1)#第四个残差层,对应conv_5self.layer4   = self.make_layer(512, 3, stride=2, dilation=1)#权重初始化self.initialize()def make_layer(self, planes, blocks, stride, dilation):downsample = None#若步幅不为1或输入通道数与目标通道数不匹配,则进行下采样if stride != 1 or self.inplanes != planes*4:#使用1×1卷积和批量归一化进行下采样downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes*4, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes*4))#添加第一个残差块,使用Bottleneck结构(输入通道数、输出通道数、步长、下采样模块、膨胀系数)layers = [Bottleneck(self.inplanes, planes, stride, downsample, dilation=dilation)]#更新通道数,为原先四倍self.inplanes = planes*4#循环添加残差块for _ in range(1, blocks):layers.append(Bottleneck(self.inplanes, planes, dilation=dilation))return nn.Sequential(*layers)def forward(self, x):#conv1,输出为112×112out1 = F.relu(self.bn1(self.conv1(x)), inplace=True)#conv2_x,输出为56×56out1 = F.max_pool2d(out1, kernel_size=3, stride=2, padding=1)out2 = self.layer1(out1)#conv_3,输出为28×28out3 = self.layer2(out2)#conv_4,输出为14×14out4 = self.layer3(out3)#conv_5,输出为7×7out5 = self.layer4(out4)return out1, out2, out3, out4, out5def initialize(self):#加载预训练模型的权重,允许部分权重匹配(strict=False)self.load_state_dict(torch.load('resnet50-19c8e357.pth'), strict=False)

3.class SRM:SR模块

  class SRM(nn.Module)实现自细化模块,用于将HA模块(一个)和FIA模块(三个)得到的特征图进一步细化和增强。

在这里插入图片描述

""" Self Refinement Module """
class SRM(nn.Module):def __init__(self, in_channel):super(SRM, self).__init__()self.conv1 = nn.Conv2d(in_channel, 256, kernel_size=3, stride=1, padding=1)self.bn1 = nn.BatchNorm2d(256)self.conv2 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)def forward(self, x):#先将输入特征压缩为256通道大小,再分别通过Batch Normalization、ReLU层out1 = F.relu(self.bn1(self.conv1(x)), inplace=True)#经过卷积运算转为512通道out2 = self.conv2(out1)#将前256通道作为权重,后256通道作为偏置0w, b = out2[:, :256, :, :], out2[:, 256:, :, :]#加权结合out1、w、b,并应用ReLU激活函数得到输出return F.relu(w * out1 + b, inplace=True)def initialize(self):weight_init(self)

4.class FAM:FIA模块

  class FAM(nn.Module)定义特征交织聚合模块,用于融合低级特征、高级特征、上下文特征,从而产生具有全局感知的区分性和综合性特征。

在这里插入图片描述

""" Feature Interweaved Aggregation Module """
class FAM(nn.Module):def __init__(self, in_channel_left, in_channel_down, in_channel_right):#接受左、下、右三个方向的输入通道数(对应低级特征、高级特征、全局特征)super(FAM, self).__init__()#对低级特征f_l进行卷积、归一化self.conv0 = nn.Conv2d(in_channel_left, 256, kernel_size=3, stride=1, padding=1)self.bn0   = nn.BatchNorm2d(256)#对高级特征f_h进行卷积、归一化self.conv1 = nn.Conv2d(in_channel_down, 256, kernel_size=3, stride=1, padding=1)self.bn1   = nn.BatchNorm2d(256)#对全局特征f_g进行卷积、归一化self.conv2 = nn.Conv2d(in_channel_right, 256, kernel_size=3, stride=1, padding=1)self.bn2   = nn.BatchNorm2d(256)self.conv_d1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)self.conv_d2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)self.conv_l = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)self.conv3 = nn.Conv2d(256*3, 256, kernel_size=3, stride=1, padding=1)self.bn3 = nn.BatchNorm2d(256)def forward(self, left, down, right):#依次将低级特征f_l、高级特征f_h、全局特征f_g卷积、归一化、ReLU激活,并压缩到256通道left = F.relu(self.bn0(self.conv0(left)), inplace=True)down = F.relu(self.bn1(self.conv1(down)), inplace=True)right = F.relu(self.bn2(self.conv2(right)), inplace=True) #256#上采样高级特征图down_1 = self.conv_d1(down)#对left特征图卷积,得到分割掩码w1w1 = self.conv_l(left)#检查高级特征图和低级特征图的空间维度,不匹配则使用线性插值调整高级特征图的大小.将分割掩码w1与高级特征图相乘并使用ReLU激活函数,得到f_{hl}if down.size()[2:] != left.size()[2:]:down_ = F.interpolate(down, size=left.size()[2:], mode='bilinear')z1 = F.relu(w1 * down_, inplace=True)else:z1 = F.relu(w1 * down, inplace=True)#将上采样后的高级特征图调整至与低级特征图相同的维度if down_1.size()[2:] != left.size()[2:]:down_1 = F.interpolate(down_1, size=left.size()[2:], mode='bilinear')#将高级特征图与低级特征图相乘得到f_{lh}z2 = F.relu(down_1 * left, inplace=True)#上采样全局特征图down_2 = self.conv_d2(right)if down_2.size()[2:] != left.size()[2:]:down_2 = F.interpolate(down_2, size=left.size()[2:], mode='bilinear')#将全局特征图与低级特征图相乘得到f_{gl}z3 = F.relu(down_2 * left, inplace=True)#将三个结果catout = torch.cat((z1, z2, z3), dim=1)#输入卷积层运算并返回return F.relu(self.bn3(self.conv3(out)), inplace=True)def initialize(self):weight_init(self)

5.class CA:GCF模块

  class CA(nn.Module)对应模块 G C F GCF GCF,用于从 R e s N e t 50 ResNet50 ResNet50提取的特征中捕获全局上下文信息,并输入到每个阶段的FIA模块。计算公式如下:
在这里插入图片描述

  • f t o p f_{top} ftop:输入特征1。
  • f g a p f_{gap} fgap:输入特征2。
class CA(nn.Module):def __init__(self, in_channel_left, in_channel_down):#in_channel_left:f_{top}通道数;in_channel_down:f_{gap}通道数super(CA, self).__init__()self.conv0 = nn.Conv2d(in_channel_left, 256, kernel_size=1, stride=1, padding=0)self.bn0   = nn.BatchNorm2d(256)self.conv1 = nn.Conv2d(in_channel_down, 256, kernel_size=1, stride=1, padding=0)self.conv2 = nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)def forward(self, left, down):#对f_{top}进行Conv+Batch Normlization+ReLUleft = F.relu(self.bn0(self.conv0(left)), inplace=True)#平均池化,减少空间维度(H、W下降)down = down.mean(dim=(2,3), keepdim=True)#卷积+激活down = F.relu(self.conv1(down), inplace=True)#将输出值归一化到0-1之间down = torch.sigmoid(self.conv2(down))return left * downdef initialize(self):weight_init(self)

6.class SA:HA模块

  编码器顶层特征通常对于显著性目标检测是多余的,HA模块可利用空间和通道注意力机制来学习更多选择性和代表性的特征。计算公式:
在这里插入图片描述
在这里插入图片描述
代码中类SA仅获取 F 1 F1 F1,而 F 1 F1 F1 f f f的计算由GCF模块(对应类CA)实现。

class SA(nn.Module):def __init__(self, in_channel_left, in_channel_down):super(SA, self).__init__()self.conv0 = nn.Conv2d(in_channel_left, 256, kernel_size=3, stride=1, padding=1)self.bn0   = nn.BatchNorm2d(256)self.conv2 = nn.Conv2d(in_channel_down, 512, kernel_size=3, stride=1, padding=1)def forward(self, left, down):#left、down都是由ResNet提取的特征#与SR模块相同操作left = F.relu(self.bn0(self.conv0(left)), inplace=True) #256 channelsdown_1 = self.conv2(down)#检查down_1的空间尺寸是否与left相同.如果不同,则使用双线性插值调整down_1的尺寸.if down_1.size()[2:] != left.size()[2:]:down_1 = F.interpolate(down_1, size=left.size()[2:], mode='bilinear')#与SR模块相同,分别获取权重w、bw,b = down_1[:,:256,:,:], down_1[:,256:,:,:]#得到F1return F.relu(w*left+b, inplace=True)def initialize(self):weight_init(self)

7.class GCPANet:网络架构

在这里插入图片描述
  class GCPANet(nn.Module)定义了GCPANet的模型架构。

class GCPANet(nn.Module):def __init__(self, cfg):super(GCPANet, self).__init__()self.cfg     = cfg#ResNet50:进行特征提取self.bkbone  = ResNet()#GCF:初始化多个通道注意力模块(CA)、空间注意力模块(SA)用于特征加权self.ca45    = CA(2048, 2048)self.ca35    = CA(2048, 2048)self.ca25    = CA(2048, 2048)self.ca55    = CA(256, 2048)self.sa55   = SA(2048, 2048)#FIA:初始化特征交织聚合模块,用于处理不同层次的特征self.fam45   = FAM(1024,  256, 256)self.fam34   = FAM( 512,  256, 256)self.fam23   = FAM( 256,  256, 256)#SR:初始化自细化模块,用于对特征进行处理和提升self.srm5    = SRM(256)self.srm4    = SRM(256)self.srm3    = SRM(256)self.srm2    = SRM(256)#四个卷积层,将特征图(256通道)映射为单通道输出self.linear5 = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1)self.linear4 = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1)self.linear3 = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1)self.linear2 = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1)#初始化权重self.initialize()def forward(self, x):#使用骨干网络ResNet提取多层次特征out1, out2, out3, out4, out5_ = self.bkbone(x)# GCFout4_a = self.ca45(out5_, out5_)out3_a = self.ca35(out5_, out5_)out2_a = self.ca25(out5_, out5_)# HAout5_a = self.sa55(out5_, out5_)out5 = self.ca55(out5_a, out5_)#FIA+SRout5 = self.srm5(out5)out4 = self.srm4(self.fam45(out4, out5, out4_a))out3 = self.srm3(self.fam34(out3, out4, out3_a))out2 = self.srm2(self.fam23(out2, out3, out2_a))#将四个阶段SR模块的输出线性插值,得到与原始图像有相同大小的特征图out5  = F.interpolate(self.linear5(out5), size=x.size()[2:], mode='bilinear')out4  = F.interpolate(self.linear4(out4), size=x.size()[2:], mode='bilinear')out3  = F.interpolate(self.linear3(out3), size=x.size()[2:], mode='bilinear')out2  = F.interpolate(self.linear2(out2), size=x.size()[2:], mode='bilinear')#返回四张特征图return out2, out3, out4, out5def initialize(self):if self.cfg.snapshot:try:self.load_state_dict(torch.load(self.cfg.snapshot))except:print("Warning: please check the snapshot file:", self.cfg.snapshot)passelse:weight_init(self)

train.py

import sys
import datetimeimport torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from data import dataset
from net  import GCPANet
import logging as logger
from lib.data_prefetcher import DataPrefetcher
from lib.lr_finder import LRFinder
import numpy as np
import matplotlib.pyplot as plt#设置日志文件标签和保存路径
TAG = "ours"
SAVE_PATH = "ours"#配置日志记录的格式和输出文件
logger.basicConfig(level=logger.INFO, format='%(levelname)s %(asctime)s %(filename)s: %(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', \filename="train_%s.log"%(TAG), filemode="w")#学习率更新策略
def get_triangle_lr(base_lr, max_lr, total_steps, cur, ratio=1., \annealing_decay=1e-2, momentums=[0.95, 0.85]):first = int(total_steps*ratio)last  = total_steps - firstmin_lr = base_lr * annealing_decaycycle = np.floor(1 + cur/total_steps)x = np.abs(cur*2.0/total_steps - 2.0*cycle + 1)if cur < first:lr = base_lr + (max_lr - base_lr) * np.maximum(0., 1.0 - x)else:lr = ((base_lr - min_lr)*cur + min_lr*first - base_lr*total_steps)/(first - total_steps)if isinstance(momentums, int):momentum = momentumselse:if cur < first:momentum = momentums[0] + (momentums[1] - momentums[0]) * np.maximum(0., 1.-x)else:momentum = momentums[0]return lr, momentum
#设置基本学习率、最大学习率和是否进行学习率查找的标志
BASE_LR = 1e-3
MAX_LR = 0.1
FIND_LR = False#训练函数,参数为数据集、网络模型
def train(Dataset, Network):#配置数据集参数cfg    = Dataset.Config(datapath='./data/DUTS', savepath=SAVE_PATH, mode='train', batch=8, lr=0.05, momen=0.9, decay=5e-4, epoch=30)#创建数据集实例和数据加载器data   = Dataset.Data(cfg)loader = DataLoader(data, batch_size=cfg.batch, shuffle=True, num_workers=8)#初始化数据预取器并提高数据加载效率prefetcher = DataPrefetcher(loader)#创建模型、设为训练模式、转移到GPUnet    = Network(cfg)net.train(True)net.cuda()#根据参数名称将参数分为基础参数和头部参数base, head = [], []for name, param in net.named_parameters():if 'bkbone' in name:base.append(param)else:head.append(param)#为基础参数和头部参数定义优化器optimizer   = torch.optim.SGD([{'params':base}, {'params':head}], lr=cfg.lr, momentum=cfg.momen, weight_decay=cfg.decay, nesterov=True)#记录训练过程中的指标sw          = SummaryWriter(cfg.savepath)#全局步数计数器global_step = 0db_size = len(loader)#若启用学习率查找,执行查找测试并绘制结果if FIND_LR:lr_finder = LRFinder(net, optimizer, criterion=None)lr_finder.range_test(loader, end_lr=50, num_iter=100, step_mode="exp")plt.ion()lr_finder.plot()import pdb; pdb.set_trace()#进行训练for epoch in range(cfg.epoch):prefetcher = DataPrefetcher(loader)batch_idx = -1#获取图像及掩模image, mask = prefetcher.next()while image is not None:niter = epoch * db_size + batch_idx#获取当前迭代的学习率和动量lr, momentum = get_triangle_lr(BASE_LR, MAX_LR, cfg.epoch*db_size, niter, ratio=1.)optimizer.param_groups[0]['lr'] = 0.1 * lr #for backboneoptimizer.param_groups[1]['lr'] = lroptimizer.momentum = momentumbatch_idx += 1global_step += 1#获取模型输出out2, out3, out4, out5 = net(image)#计算各个特征图对应的损失值loss2                  = F.binary_cross_entropy_with_logits(out2, mask)loss3                  = F.binary_cross_entropy_with_logits(out3, mask)loss4                  = F.binary_cross_entropy_with_logits(out4, mask)loss5                  = F.binary_cross_entropy_with_logits(out5, mask)#根据权重计算综合损失loss                   = loss2*1 + loss3*0.8 + loss4*0.6 + loss5*0.4optimizer.zero_grad()loss.backward()optimizer.step()#绘制曲线sw.add_scalar('lr'   , optimizer.param_groups[0]['lr'], global_step=global_step)sw.add_scalars('loss', {'loss2':loss2.item(), 'loss3':loss3.item(), 'loss4':loss4.item(), 'loss5':loss5.item(), 'loss':loss.item()}, global_step=global_step)#每10个批次打印一次训练信息if batch_idx % 10 == 0:msg = '%s | step:%d/%d/%d | lr=%.6f | loss=%.6f | loss2=%.6f | loss3=%.6f | loss4=%.6f | loss5=%.6f'%(datetime.datetime.now(),  global_step, epoch+1, cfg.epoch, optimizer.param_groups[0]['lr'], loss.item(), loss2.item(), loss3.item(), loss4.item(), loss5.item())print(msg)#格式化并打印当前的训练状态logger.info(msg)#获取下一批数据image, mask = prefetcher.next()#每10个epoch 或最后一个epoch 保存模型权重if (epoch+1)%10 == 0 or (epoch+1)==cfg.epoch:torch.save(net.state_dict(), cfg.savepath+'/model-'+str(epoch+1))if __name__=='__main__':train(dataset, GCPANet)

test.py

class Test(object):def __init__(self, Dataset, datapath, Network):## datasetself.datapath = datapath.split("/")[-1]print("Testing on %s"%self.datapath)self.cfg = Dataset.Config(datapath = datapath, snapshot=sys.argv[1], mode='test')self.data   = Dataset.Data(self.cfg)self.loader = DataLoader(self.data, batch_size=1, shuffle=True, num_workers=8)## networkself.net    = Network(self.cfg)self.net.train(False)self.net.cuda()self.net.eval()#计算模型准确度def accuracy(self):with torch.no_grad():#初始化指标mae, fscore, cnt, number   = 0, 0, 0, 256mean_pr, mean_re, threshod = 0, 0, np.linspace(0, 1, number, endpoint=False)cost_time = 0for image, mask, (H, W), maskpath in self.loader:image, mask            = image.cuda().float(), mask.cuda().float()#记录开始时间并前向传播start_time = time.time()out2, out3, out4, out5 = self.net(image)pred                   = torch.sigmoid(out2)torch.cuda.synchronize()end_time = time.time()#计算前向传播所需时间,并更新总时间cost_time += end_time - start_time#计算MAEcnt += 1mae += (pred-mask).abs().mean()#计算精确率、召回率precision = torch.zeros(number)recall    = torch.zeros(number)for i in range(number):temp         = (pred >= threshod[i]).float()precision[i] = (temp*mask).sum()/(temp.sum()+1e-12)recall[i]    = (temp*mask).sum()/(mask.sum()+1e-12)mean_pr += precisionmean_re += recallfscore   = mean_pr*mean_re*(1+0.3)/(0.3*mean_pr+mean_re+1e-12)#每20批次打印MAE、F-score和每秒帧数(fps)if cnt % 20 == 0:fps = image.shape[0] / (end_time - start_time)print('MAE=%.6f, F-score=%.6f, fps=%.4f'%(mae/cnt, fscore.max()/cnt, fps))#计算整体FPS并打印最终结果(数据集路径、MAE 和 F-score)fps = len(self.loader.dataset) / cost_timemsg = '%s MAE=%.6f, F-score=%.6f, len(imgs)=%s, fps=%.4f'%(self.datapath, mae/cnt, fscore.max()/cnt, len(self.loader.dataset), fps)print(msg)logger.info(msg)#将预测结果保存为图像def save(self):with torch.no_grad():for image, mask, (H, W), name in self.loader:out2, out3, out4, out5 = self.net(image.cuda().float())out2     = F.interpolate(out2, size=(H,W), mode='bilinear')pred     = (torch.sigmoid(out2[0,0])*255).cpu().numpy()head     = './pred_maps/{}/'.format(TAG) + self.cfg.datapath.split('/')[-1]if not os.path.exists(head):os.makedirs(head)cv2.imwrite(head+'/'+name[0],np.uint8(pred))if __name__=='__main__':for e in DATASETS:t =Test(dataset, e, GCPANet)t.accuracy()t.save()

http://www.ppmy.cn/ops/126838.html

相关文章

【分布式微服务云原生】探索RESTful API:构建高效网络服务的秘诀

探索RESTful API&#xff1a;构建高效网络服务的秘诀 摘要&#xff1a; 在本文中&#xff0c;我们将深入探讨RESTful API的核心原则、设计最佳实践&#xff0c;并提供实际的Java代码示例和流程图。您将了解到如何利用HTTP方法、资源定位、状态码等关键概念来设计和实现一个高效…

关于使用conda和pip二者安装包

想安装另外的不在Anaconda中的Python包&#xff1a; 方式1&#xff1a;conda install package_name 方式2&#xff1a;pip install package_name 想升级另外的不在Anaconda中的Python包&#xff1a; conda update package_name pip install --upgrade package_name 注意&am…

【Petri网导论学习笔记】Petri网导论入门学习(五)—— 1.3 库所/变迁系统与加权Petri网

导航 1.3 库所/变迁系统与加权Petri网定义1.10P/T系统组成原型Petri网P/T系统与Petri网的转化示例 1.3 库所/变迁系统与加权Petri网 库所/变迁系统&#xff08;简称P/T系统&#xff09;&#xff08;Place/Transition&#xff09;在原型Petri网上增加了 S S S上的容量函数和 F …

Redis缓存穿透

缓存穿透 什么是缓存穿透 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库 解决缓存穿透的方法 解决缓存穿透有两种方案: 1.缓存空对象 优点:实现简单,维护方便 缺点:额外的内存消耗;可能存在短期的不一致(缓存null…

进入 Searing-66 火焰星球:第一周游戏指南

Alpha 第四季已开启&#xff0c;穿越火焰星球 Searing-66&#xff0c;带你开启火热征程。准备好勇闯炙热的沙漠&#xff0c;那里有无情的高温和无情的挑战在等待着你。从高风险的烹饪对决到炙热的冒险&#xff0c;Searing-66 将把你的耐力推向极限。带上充足的水&#xff0c;天…

minidump文件在另一台电脑的VS打上不开,可否在另一台电脑的windbg打开呢

是的&#xff0c;MINIDUMP文件可以在另一台电脑的WinDbg中打开进行分析。MINIDUMP文件是Windows系统产生的一种二进制文件&#xff0c;用于记录程序崩溃时的状态&#xff0c;通常用于调试和故障排查。以下是如何在另一台电脑上使用WinDbg打开MINIDUMP文件的步骤&#xff1a; 确…

HTTP cookie 与 session

一种关于登录的场景演示 - B 站登录和未登录 问题&#xff1a;B 站是如何认识我这个登录用户的&#xff1f;问题&#xff1a;HTTP 是无状态&#xff0c;无连接的&#xff0c;怎么能够记住我&#xff1f; 一、引入 HTTP Cookie 定义 HTTP Cookie&#xff08;也称为 Web Cooki…

PHP WebSocket

文章目录 PHP WebSocket 介绍Laravel 8 中使用 WebSocket实现广播1. 安装 Laravel WebSockets2. 配置 WebSocket3.运行 WebSocket 服务器4. 客户端代码5. 在 Laravel 中广播事件6. 触发事件7. 监听事件 创建单聊1.创建一个用于发送单聊消息的事件2.设置消息发送3.设置路由4.客户…