论文笔记:Prototypical Verbalizer for Prompt-based Few-shot Tuning

ops/2024/10/15 17:49:13/

论文来源:ACL 2022

论文地址:https://arxiv.org/pdf/2203.09770.pdficon-default.png?t=O83Ahttps://arxiv.org/pdf/2203.09770.pdf

论文代码:https://github.com/thunlp/OpenPrompticon-default.png?t=O83Ahttps://github.com/thunlp/OpenPrompt


 Abstract

        基于提示的预训练语言模型(pre-trained language models, PLMs)调优已经在小样本学习中显示出其优越性。通常,基于提示的调优将输入文本包装成完形填空问题,为了做出预测,模型通过人工设计或者自动构建的表达器(verbalizer)将输出的单词映射到标签上。但是,人工表达器严重依赖于特定领域的先验知识,而自动寻找合适的标签仍然具有挑战性本文提出了直接从训练数据中构建的原型表达器(ProtoVerb)。具体来说,ProtoVerb通过对比学习将学到的原型向量作为语言表达器。通过这种方式,原型归纳了训练实例,并能够包含丰富的类级别语义。本文对主题分类和实体分类任务进行了实验,结果表明,ProtoVerb显著优于当前的自动生成的表达器,特别是在训练数据极其稀缺的情况下。更令人惊讶的是,即使在未调优的PLM上,ProtoVerb也始终支持基于提示的调优,这表明使用PLM是一种优雅的非调优方式。

Introduction

        为了使PLMs适应下游任务,如分类,传统方法通过一个额外的分类器对语言模型进行微调,但是当特定任务的数据有限时,由于预训练任务和微调任务之间的差距,训练额外的高效分类器具有挑战性,并阻碍了PLMs对下游任务的快速适应。

        在基于提示的调优中,输入文本被特定任务的模板包装,将原始任务重新形式化为完形填空任务。例如,在主题分类任务中,可以使用模板“<text> This topic is about [MASK]”,PLMs推断[MASK]位置的单词,然后通过语言表达器将单词映射到对应的标签。语言表达器在基于提示的调优中是非常重要的,是建立在模型输出和最终预测结果之间的桥梁。

        目前大多数工作采用三种类型的语言表达器:人工表达器、基于搜索的表达器和软表达器。如Figure 1所示,人工设计的表达器选择一些标签词来描述类,缺点是要求设计者对下游任务有准确的理解,并且每个类能够用几个词来概括;基于搜索的表达器是通过算法从词表中找到合适的标签词;软表达器使用可训练的token在调优阶段进行优化。在大型词汇表或者低数据环境下的嵌入空间中进行充分搜索或者优化是具有挑战性的,使得自动表达器比人工表达器更不理想。

         本文直接通过训练实例计算每个类的原型向量作为语言表达器(封装了一些类级别的语义特征)进行基于提示的调优,并对主题分类和实体分类任务进行了两组实验:当人工表达器可用时,ProtoVerb作为一个额外的表达器;当样本有限,不提供人工表达器时,ProtoVerb也能生成高质量的表达器。

对比学习:是一种自监督学习方法,用于在没有标签的情况下,通过让模型学习哪些数据点相似或不同来学习数据集的一般特征。

Prototypical Verbalize

        如Figure 2所示,首先获取[MASK]的隐藏层状态来表示实例,然后将其映射到另一个嵌入空间进行原型学习。 原型被用作预测的语言表达器

Instance Representation and Similarity Function

         给定一个用模板包装的训练文本x,将[MASK]的最后一层隐藏状态h_{[MASK]}作为文本的初始表示,使用被\varphi参数化的编码器E_\varphi \left ( \cdot \right ),将x的实例表示为V=E_\varphi \left ( x \right )=Wh_{[MASK]}。然后,采用权重为W的线性编码器来度量实例之间的余弦相似度。

Loss Function

        两个目标:对于实例对,类内对应该比类间对获得更高的相似度分数;对于实例-原型对,类n的实例与原型c_n之间的相似度得分应该高于c_n与其他类实例之间的相似度得分。 为此,基于对比学习中的InfoNCE损失定义目标函数:

       

 Inference

计算查询实例与原型之间的相似度分数,

 然后通过argmax函数做预测。

        当存在其他的表达器时,首先用一个标准标量来处理不同语言表达器的logits,然后取分数的平均值得到最终分数。

Experiments

Single Verbalizer Results:

 Multiple Verbalizer Results:


http://www.ppmy.cn/ops/126037.html

相关文章

Oracle AI Vector Search

Oracle AI Vector Search 是 Oracle Database 23ai 中引入的一项新技术&#xff0c;它允许用户在数据库中直接存储和高效查询向量数据。这项技术旨在简化应用程序的开发&#xff0c;并且支持不同维度和格式的向量。以下是 Oracle AI Vector Search 的一些关键特性和优势&#x…

MySQL数据备份

【图书推荐】《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;》-CSDN博客 《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) 数据备份是数据库管理员非常…

SQL字段类型全解析:知识点、应用场景与长度说明

SQL字段类型全解析&#xff1a;知识点、应用场景与长度说明 在数据库设计和管理中&#xff0c;选择合适的字段类型对于数据的存储、检索和性能至关重要。SQL作为数据库查询和操作的标准语言&#xff0c;提供了多种字段类型以适应不同的数据需求。本文将详细介绍SQL中的字段类型…

AI学习指南深度学习篇-迁移学习的数学原理

AI学习指南深度学习篇—迁移学习的数学原理 迁移学习是深度学习中的一个重要概念&#xff0c;它通过将从一个任务中获得的知识应用到一个相关但不同的任务上&#xff0c;来提高学习效率和结果。在本篇博客中&#xff0c;将深入探讨迁移学习的数学原理&#xff0c;涵盖损失函数…

什么是Qseven?模块电脑(核心板)规范标准简介二

1.概念 Qseven是一种通用的、小尺寸计算机模块标准&#xff0c;适用于需要低功耗、低成本和高性能的应用。 Qseven模块电脑&#xff08;核心板&#xff09;采用230Pin金手指连接器 2.Qseven的起源 Qseven最初是由Congatec、SECO、MSC三家欧洲公司于2008年发起&#xff0c;旨在…

在 Spring 容器初始化 Bean 时,通过反射机制处理带有自定义 注解的字段,并将其注入相应的 Spring 管理的 Bean

背景:我们之前项目用的自己研发的框架,后来又要重构,但是有些功能还依赖于之前的框架,万不得已的情况下,我就把之前的框架当成三方的依赖给引入,引入以后就发现,很多类上用了Inject这个注解,再一看包名竟然是自定义的,这几个类就是无法注入到spring中,用了好多种方法,使用的时候…

Unity3D XML与Properties配置文件读取详解

在游戏开发过程中&#xff0c;配置文件是一个非常重要的部分&#xff0c;它可以用来存储游戏中的各种参数、设置、文本等信息。Unity3D 支持多种配置文件格式&#xff0c;比如 XML 和 Properties。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff0c;大家可以点击进来一…

K8s-资源管理

一、资源管理介绍 在kubernetes中&#xff0c;所有的内容都抽象为资源&#xff0c;用户需要通过操作资源来管理kubernetes。 kubernetes的本质上就是一个集群系统&#xff0c;用户可以在集群中部署各种服务&#xff0c;所谓的部署服务&#xff0c;其实就是在kubernetes集群中…