【自动驾驶】决策规划算法 | 数学基础(三)直角坐标与自然坐标转换Ⅰ

ops/2025/1/15 21:43:08/

写在前面:
🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝
个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。

🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒
若您觉得内容有价值,还请评论告知一声,以便更多人受益。
转载请注明出处,尊重原创,从我做起。

👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜
在这里,您将收获的不只是技术干货,还有思维的火花

📚 系列专栏:【决策规划】系列,带您深入浅出,领略控制之美。🖊
愿我的分享能为您带来启迪,如有不足,敬请指正,让我们共同学习,交流进步!

🎭 人生如戏,我们并非能选择舞台和剧本,但我们可以选择如何演绎 🌟
感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行~~~

文章目录

  • 引言
  • 一、龙格现象与多项式拟合
    • 1.1 龙格现象概述
    • 1.2 高次多项式拟合的弊端
  • 二、Frenet 坐标系的作用
    • 2.1 自然坐标系的优势
    • 2.2 坐标转换涉及的变量及其关系
  • 三、曲线坐标系的特点
    • 3.1 曲线坐标系与直角坐标系的主要区别
    • 3.2 基向量非常数对向量求导的影响
    • 3.3 直角坐标系与自然坐标系中位移描述的差异
    • 3.4 实例分析:车辆轨迹与道路几何中的坐标位移差异
  • 四、预备知识1:质点速度的向量表达式与道路几何投影导数推导
    • 4.1 质点速度的向量表达式
    • 4.2 拓展:质点在道路几何上的投影位矢导数推导
    • 4.3 质点投影点的定义
  • 五、预备知识2:Frenet公式
    • 5.1 曲线坐标系基向量特性
    • 5.2 Frenet公式及其证明
    • 5.3 拓展1:质点轨迹与道路几何的方向导数
    • 5.4 拓展2:切向加速度与法向加速度的分解
  • 六、预备知识总结
    • 6.1 变量含义
    • 6.2 辅助公式
  • 七、坐标转换算法
    • 7.1 问题描述
    • 7.2 坐标转换算法步骤概述
    • 7.3 核心公式及其应用
      • (1) 计算弧长
      • (2) 计算弧速度
      • (3) 计算弧长的时间导数
      • (4) 计算弧长的弧坐标导数
      • (5) 计算弧加速度
      • (6) 计算弧长的二阶时间导数
      • (7) 计算弧长的二阶弧坐标导数
  • 八、总结
  • 参考资料


引言

  各位小伙伴们大家好,本篇博客是自动驾驶决策规划算法数学基础的第三节第Ⅰ部分,内容整理自 B站知名up主 忠厚老实的老王 的视频,作为博主的学习笔记,分享给大家共同学习。

  本篇博客讲数学基础部分中 Frenet 坐标系和笛卡坐标系之间的坐标转换,即直角坐标和自然坐标的转换。

  本节内容如果只应用,难度其实还好,但如果想真彻底理解它是怎么来,难度非常高。需要非常熟悉微积分以及向量微积分。


一、龙格现象与多项式拟合

1.1 龙格现象概述

  讲解坐标转换之前,首先讲一下龙格现象,是数值分析里的知识,用高次多项式拟合点,可能出现震荡现象,所以要慎用高次多项式。

在这里插入图片描述
  对于较多点的拟合,尽可能用分段低次多项式拟合,而不用高次多项式拟合。

1.2 高次多项式拟合的弊端

  一般认为如果多项式次数越高,拟合精度越好,这是想当然的想法,在有些问题确实是这样,比如拟合 sin ⁡ x , cos ⁡ x \sin x,\cos x sinx,cosx 这样的三角函数,次数越高拟合越精确。

  但在有些情况并不是这样,比如在拟合 y = 25 x 2 + 1 e y=25x^2+\frac{1}{e} y=25x2+e1 时,用高次多项式拟合会出现震荡。

  在拟合时尽可能不用高次多项式,高次多项式很可能出现震荡现象,所以一般对大量点进行拟合时,用分段一次多样式拟合,而不用高次多项式。


二、Frenet 坐标系的作用

2.1 自然坐标系的优势

为什么要把笛卡尔坐标转化为自然坐标?

  因为实际上道路它都是千变万化的,有不同的曲率和长短。如果只在直角坐标下分析问题,就意味着不同的道路形状、不同道路的长短都要分开考虑,非常麻烦。

  如果以道路中心线为曲线坐标系建立自然坐标,只需要关注怎么进行坐标转换可以,只要把直角坐标转换为自然坐标,无论是什么道路、什么路况,都可以用同一套方法解决问题,也就是只要做把直角坐标转化为自然坐标,解决问题后,再把自然坐标转化为直角坐标。极大简化分析问题的难度。不同道路都可以转化成同样坐标系分析,再加坐标转换就可以了。

  关于转换公式,可以参考以下博客:
  Frenet坐标系与Cartesian坐标系互转(一):公式推导

  上面的博客给出了笛卡尔坐标转Frenet坐标和Frenet坐标转笛卡尔坐标,直接会用公式就可以了。

  下面使用向量法推导,可降低推导难度,不用上面博客的推导方法也能得出一样的结果。

2.2 坐标转换涉及的变量及其关系

  首先建立直角坐标系:
在这里插入图片描述

  第一条曲线是车辆轨迹,第二条曲线是道路几何,在车辆轨迹曲线取一点,有速度 v v v,加速度 a a a,位置矢量 r ⃗ \vec r r ,以及在直角坐标系下的曲率 κ \kappa κ

  无人驾驶车一般用 Host Vehicle 表示,已知车在笛卡尔标系下的 r ⃗ h , v ⃗ h , a ⃗ h , κ h \vec r_h,\vec v_h,\vec a_h,\kappa_h r h,v h,a h,κh,求车在以道路为坐标轴的Frenet坐标系下的坐标 s , s ˙ , s ¨ , l , l ′ , l ′ ′ , l ˙ , l ¨ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime},\dot l,\ddot l s,s˙,s¨,l,l,l′′,l˙,l¨,其中 s ˙ = d s d t , l ˙ = d l d t , l ˙ = d l d s \dot{s}=\frac{ds}{dt},\dot{l}=\frac{dl}{dt},\dot{l}=\frac{dl}{ds} s˙=dtds,l˙=dtdl,l˙=dsdl

共有 8 8 8 个坐标要求,但一般实际上用不到这 8 8 8 个变量。一般只用 6 6 6 个:

  • s , s ˙ , s ¨ , l , l ˙ , l ¨ s,\dot{s},\ddot{s},l,\dot l,\ddot l s,s˙,s¨,l,l˙,l¨
  • s , s ˙ , s ¨ , l , l ′ , l ′ ′ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime} s,s˙,s¨,l,l,l′′

到底用哪 6 6 6 个变量,取决于规划方法是什么:

  • 对于 EM Planner ,求 s , s ˙ , s ¨ , l , l ′ , l ′ ′ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime} s,s˙,s¨,l,l,l′′
  • 对于 Lattice Planner,求 s , s ˙ , s ¨ , l , l ˙ , l ¨ s,\dot{s},\ddot{s},l,\dot l,\ddot l s,s˙,s¨,l,l˙,l¨

  虽然变量有 8 8 8 个,但独立变量只有 6 6 6 个,因为 l ′ , l ′ ′ l^{\prime},l^{\prime\prime} l,l′′ l ˙ , l ¨ \dot l,\ddot l l˙,l¨ 可以互相转化:
l ˙ = d l d t = d l d s ⋅ d s d t = l ′ s ˙ \dot{l}=\frac{dl}{dt}=\frac{dl}{ds}\cdot \frac{ds}{dt}=l'\dot{s} l˙=dtdl=dsdldtds=ls˙ l ¨ = d l ˙ d t = d ( l ′ s ˙ ) d t = d l ′ d t s ˙ + l ′ ⋅ d s ˙ d t = d l ′ d s d s d t s ˙ + l ′ d s ˙ d t = l ′ ′ s ˙ 2 + l ′ s ¨ \begin{aligned} \ddot{l}&=\frac{\text{d}\dot{l}}{\text{d}t}=\frac{\text{d}\left( l'\dot{s} \right)}{\text{d}t}=\frac{\text{d}l'}{\text{d}t}\dot{s}+l'\cdot \frac{\text{d}\dot{s}}{\text{d}t}\\ &=\frac{\text{d}l'}{\text{d}s}\frac{\text{d}s}{\text{d}t}\dot{s}+l'\frac{\text{d}\dot{s}}{\text{d}t}=l''\dot{s}^2+l'\ddot{s}\\ \end{aligned} l¨=dtdl˙=dtd(ls˙)=dtdls˙+ldtds˙=dsdldtdss˙+ldtds˙=l′′s˙2+ls¨   EM planner 采用的是 s , s ˙ , s ¨ , l , l ′ , l ′ ′ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime} s,s˙,s¨,l,l,l′′

三、曲线坐标系的特点

3.1 曲线坐标系与直角坐标系的主要区别

曲线坐标系与直角坐标系有两点不同:

  • 曲线坐标系的基向量一般不是常向量
  • 点的曲线坐标变化与点的实际位移一般不一致

在直角坐标下:
在这里插入图片描述

  基向量是 i i i j j j,显然是常向量 d i d x = 0 ⃗ \frac{di}{dx}=\vec 0 dxdi=0

  但在曲线坐标系:
在这里插入图片描述

  基向量为 τ ⃗ \vec \tau τ τ ⃗ \vec \tau τ 的大小它不变,但 τ ⃗ \vec \tau τ 的方向会随 s s s 变化而变化,所以 d τ d s ≠ 0 \frac{d\tau}{ds}\ne 0 dsdτ=0

3.2 基向量非常数对向量求导的影响

基向量对坐标的导数不为 0 0 0 有什么影响?

  最大的影响就在于对向量求导,比如在直角坐标下,如果向量 v = v x i + v y j v=v_xi+v_yj v=vxi+vyj 对向量 v v v 求导,只要把坐标去掉就可以,变成
v ˙ = v ˙ x i + v ˙ y j \dot{v}=\dot{v}_xi+\dot{v}_yj v˙=v˙xi+v˙yj  但如果 在曲线坐标系下, v ˙ = v ˙ x τ ⃗ + v ˙ y n ⃗ \dot{v}=\dot{v}_x\vec\tau+\dot{v}_y\vec n v˙=v˙xτ +v˙yn ,对向导求导不仅要对 v x , v y v_x,v_y vx,vy 求导,还要对 τ ⃗ , n ⃗ \vec \tau,\vec n τ ,n 求导,因为 τ ⃗ , n ⃗ \vec \tau,\vec n τ ,n 不是常向量,即向量导数不为 0 0 0,这是和直角坐标系相比最大的区别。

  在曲线坐标系下,对向量求导一般比较复杂,不像在直角坐标下,只要对 v x , v y v_x,v_y vx,vy 求导就可以了。

3.3 直角坐标系与自然坐标系中位移描述的差异

  另外,曲线坐标系描述起来比较复杂,举个例子,比如直角坐标系:
在这里插入图片描述

  直角坐标系下有点 ( x , y ) (x,y) (x,y),让 y y y 不动, x x x 移动 Δ x \Delta x Δx。在 y y y 不动的情况下,点的实际位移和坐标的位移一样,点移动了 Δ x \Delta x Δx 的距离,坐标也从 x x x 移到了 x + Δ x x+\Delta x x+Δx 也是 Δ x \Delta x Δx 的距离,在直角坐标系下,如果 y y y 不动, x x x 坐标的移动距离和点实际移动的距离一样,都是 Δ x \Delta x Δx

  但在自然坐标系:
在这里插入图片描述

  同样点 ( s , l ) (s,l) (s,l),让 l l l 不动, s s s 坐标移动 Δ s \Delta s Δs,点也会移动弧长 Δ s ′ \Delta s' Δs Δ s \Delta s Δs Δ s ′ \Delta s' Δs 一般不相等。

  这一结论最反直觉,也是对初学者来说是最别扭的结论。自然坐标系和直角坐标系项最大的不同就是在直角坐标系下只有 d y d x \frac{dy}{dx} dxdy,而在曲线坐标系下有 d d s \frac{d}{ds} dsd,还有 d d s x \frac{d}{ds_x} dsxd

  在直角坐标系下,如果对函数求导,只有 d x d x dx d x d x dx 不区分 d x d x dx 到底是实际点的位移,还是在 x x x 坐标方向上分量的位移。

但在自然坐标系下,因为 Δ s \Delta s Δs Δ s ′ \Delta s' Δs 一般不相等,所以它们的微分 d s ds ds d s ′ ds' ds 一般也不一样,所以在自然坐标系下,如果想求变量在 d s ds ds 方向上的导数时,必须要指出弧微分 d s ds ds 到底是哪个曲线的弧长。

  总结:在直角坐标系下只有 d x dx dx,在自然坐标系下可能有多个 d s ds ds

3.4 实例分析:车辆轨迹与道路几何中的坐标位移差异

  举个例子说明:
在这里插入图片描述

  比如短弧线是车辆轨迹,长弧线是道路几何,假设车沿道路平行移动,即车的 l l l 不动。

  车原来在红色点的位置,经过 d y dy dy 的时间,车跑到蓝色点的位置,同样它在坐标轴上的投影也跑到蓝色点处,就有两个 d s ds ds

  • 车速 d s x d t = ∣ v ⃗ ∣ \frac{ds_x}{dt}=|\vec v| dtdsx=v
  • 投影速度 d s d t = s ˙ \frac{ds}{dt}=\dot{s} dtds=s˙

  上面算出来的是 v v v 的大小,不带方向,一般情况下 ∣ v ⃗ ∣ |\vec v| v 不等于 s ˙ \dot s s˙,因为 d s ds ds d s x ds_x dsx 不一样,所以它们的速度不一样。


四、预备知识1:质点速度的向量表达式与道路几何投影导数推导

4.1 质点速度的向量表达式

  比如在直角坐标系下质点的轨迹是这样:
在这里插入图片描述

  证明 r ˙ ⃗ = ∣ v ⃗ ∣ τ ⃗ \vec{\dot{r}}=|\vec{v}|\vec{\tau} r˙ =v τ τ ⃗ \vec{\tau} τ 是质点在切线方向上的单位向量,记 ∣ v ⃗ ∣ τ ⃗ |\vec{v}|\vec{\tau} v τ v ⃗ \vec v v

  假设经过 d t dt dt 时间, r ⃗ \vec r r 位置变成了 r + d r r+dr r+dr ,它划过的弧长为 d s ds ds。根据向量加减法,紫红色向量为 d r dr dr,位矢对时间的导数 r ˙ ⃗ = d r ⃗ d t = d r ⃗ d s ⋅ d s d t \vec{\dot r}=\frac{d\vec{r}}{dt}=\frac{d\vec{r}}{ds}\cdot\frac{ds}{dt} r˙ =dtdr =dsdr dtds  当 d t → 0 dt\rightarrow 0 dt0 时, ∣ d r ⃗ ∣ d s → 1 \frac{|d\vec{r}|}{ds}\rightarrow 1 dsdr 1,方向趋于轨迹在 r r r 的切线方向 τ ⃗ \vec \tau τ ,所以:
r ˙ ⃗ = 1 ⋅ τ ⃗ ⋅ d s d t = ∣ v ⃗ ∣ τ ⃗ = v ⃗ \vec{\dot{r}}=1\cdot \vec{\tau}\cdot \frac{ds}{dt}=|\vec{v}|\vec{\tau}=\vec{v} r˙ =1τ dtds=v τ =v

4.2 拓展:质点在道路几何上的投影位矢导数推导

  比如在直角坐标系下有两条曲线:质点轨迹和道路几何
在这里插入图片描述

  比如在质点轨迹曲线上有质点,位置为 r ⃗ h \vec r_h r h,质点在道路几何上的投影位矢记为 r ⃗ r \vec r_r r r,根据上面的推导 r ˙ ⃗ h = ∣ v ⃗ ∣ τ ⃗ = v ⃗ \vec{\dot{r}}_h=|\vec{v}|\vec{\tau}=\vec{v} r˙ h=v τ =v τ ⃗ h \vec \tau_h τ h 是质点在轨迹上的切线方向, τ ⃗ r \vec \tau_r τ r 是投影在道路几何上的切线方向,投影位矢的导数为:

r ˙ ⃗ r = d r ⃗ r d t = d r ⃗ r d s r ⋅ d s r d t = s ˙ τ ⃗ r \vec{\dot{r}}_r=\frac{\text{d}\vec{r}_r}{\text{d}t}=\frac{\text{d}\vec{r}_r}{\text{d}s_r}\cdot \frac{\text{d}s_r}{\text{d}t}=\dot{s}\vec{\tau}_r r˙ r=dtdr r=dsrdr rdtdsr=s˙τ r  如果道路是 Frenet 坐标系的坐标轴,则 d s r d t = s ˙ \frac{\text{d}s_r}{\text{d}t}=\dot{s} dtdsr=s˙。在自然坐标系下有不同的 d s ds ds,但在直角坐标系下只有 d x dx dx

4.3 质点投影点的定义

  如果点的切线方向和点与质点的连线方向垂直:
在这里插入图片描述

  称为质点的投影点


五、预备知识2:Frenet公式

5.1 曲线坐标系基向量特性

  在曲线坐标系下, d τ ⃗ d s \frac{d\vec \tau}{ds} dsdτ 一般不为零向量。

问题来了, d τ ⃗ d s \frac{d\vec \tau}{ds} dsdτ 到底等于什么呢?包括它的法向量 d n ⃗ d s \frac{d\vec n}{ds} dsdn 等于什么呢?

5.2 Frenet公式及其证明

  Frenet公式给出了结果:
d t ⃗ d s = κ n ⃗ d n ⃗ d s = − κ τ ⃗ \frac{d\vec{t}}{ds}=\kappa \vec{n}\quad \frac{d\vec{n}}{ds}=-\kappa \vec{\tau} dsdt =κn dsdn =κτ   其中, d s ds ds 为所画曲线的弧微分。

  证明:假设 τ \tau τ 经过 d s ds ds 变成了 τ + d τ \tau +d\tau τ+dτ,因为 τ \tau τ τ + d τ \tau +d\tau τ+dτ 是单位向量,所以模都是 1 1 1
在这里插入图片描述
  几何关系如下:
在这里插入图片描述
  夹角为 d θ d\theta dθ,三角形是等腰三角形,根据几何关系, d τ ⃗ d\vec{\tau} dτ 的长度为:
∣ d τ ⃗ ∣ = 2 ⋅ 1 ⋅ sin ⁡ ( d θ 2 ) |d\vec{\tau}|=2\cdot 1\cdot \sin \left( \frac{d\theta}{2} \right) dτ =21sin(2dθ)  当 d s ds ds 趋于 0 0 0 时, d τ ⃗ d\vec \tau dτ 的方向趋于 τ ⃗ \vec \tau τ 的垂直方向 n ⃗ \vec n n ,大小为
∣ d τ ⇀ ∣ d s = 2 sin ⁡ d θ 2 d s = d θ d s = κ \frac{|d\overrightharpoon{\tau }|}{ds}=\frac{2\sin \frac{d\theta}{2}}{ds}=\frac{d\theta}{ds}=\kappa dsdτ =ds2sin2dθ=dsdθ=κ  其中, d θ d s \frac{d\theta}{ds} dsdθ 就是曲率的定义,所以
d τ ⃗ d s = κ n ⃗ \frac{d\vec{\tau}}{ds}=\kappa \vec{n} dsdτ =κn   同理
d n ⃗ d s = − κ τ ⃗ \frac{d\vec{n}}{ds}=-\kappa \vec{\tau} dsdn =κτ   证明方式和上面一样。

5.3 拓展1:质点轨迹与道路几何的方向导数

在这里插入图片描述
  假设上面弧曲线是质点轨迹,下面是道路几何,有质点的位矢以及质点的投影位矢。记质点的切线方向是 τ ⃗ h \vec \tau_h τ h,它的投影切线方向是 τ ⃗ r \vec \tau_r τ r τ ⃗ h \vec \tau_h τ h 对时间的导数:
τ ˙ ⃗ h = d τ ⃗ h d t = d τ ⃗ h d s h ⋅ d s h d t = κ h n ⃗ h ∣ v ⃗ ∣ \vec{\dot{\tau}}_h=\frac{d\vec{\tau}_h}{dt}=\frac{d\vec{\tau}_h}{ds_h}\cdot \frac{ds_h}{dt}=\kappa_h \vec{n}_h|\vec{v}| τ˙ h=dtdτ h=dshdτ hdtdsh=κhn hv   其中, κ h \kappa_h κh 为质点所在轨迹的曲率。

  同理,质点法向量的导数为:
n ˙ ⃗ h = − κ τ ⃗ h ⋅ ∣ v ⃗ ∣ = − κ h ∣ v ⃗ ∣ τ ⃗ h \vec{\dot{n}}_h=-\kappa \vec{\tau}_h\cdot |\vec{v}|=-\kappa_h |\vec{v}|\vec{\tau}_h n˙ h=κτ hv =κhv τ h  同理,投影点的切向量和法向量对时间的导数分别为:
τ ˙ ⃗ r = κ s ˙ n ⃗ r n ˙ ⃗ r = − κ s ˙ τ ⃗ r \begin{aligned} \vec{\dot{\tau}}_r&=\kappa \dot{s}\vec{n}_r\\ \vec{\dot{n}}_r&=-\kappa \dot{s}\vec{\tau}_r\\ \end{aligned} τ˙ rn˙ r=κs˙n r=κs˙τ r  这四个公式是坐标转换的核心公式。

  坐标转换有 l , l ′ , l ′ ′ l,l',l'' l,l,l′′,其中, l ′ = d l d s l'=\frac{dl}{ds} l=dsdl d s ds ds 指的是 Frenet 坐标系下坐标轴曲线的弧微分。

  注意:上述四个核心公式中的曲率,无论是 κ h \kappa_h κh 还是 κ r \kappa_r κr,都是指在直角坐标系下的曲率。因为自然坐标系下也有曲线及其曲率,自然坐标系下的曲率和直角坐标系下的曲率不一样。

5.4 拓展2:切向加速度与法向加速度的分解

  同样在直角坐标系下有轨迹和质点:
在这里插入图片描述

  已知 r ⃗ , τ ⃗ , n ⃗ , κ \vec{r},\vec{\tau},\vec{n},\kappa r ,τ ,n ,κ,求 v ⃗ \vec v v
v ⃗ = r ˙ ⃗ = ∣ v ⃗ ∣ τ ⃗ \vec{v}=\vec{\dot{r}}=|\vec{v}|\vec{\tau} v =r˙ =v τ   求 a ⃗ \vec a a ,利用预备知识的拓展1: τ ˙ ⃗ = κ ∣ v ⃗ ∣ n ⃗ \vec{\dot{\tau}}=\kappa |\vec{v}|\vec{n} τ˙ =κv n

a ⃗ = d v ⃗ d t = d ∣ v ⃗ ∣ τ ⃗ d t = d ∣ v ⃗ ∣ d t τ ⃗ + ∣ v ⃗ ∣ d τ ⃗ d t = ∣ v ˙ ⃗ ∣ τ ⃗ + ∣ v ⃗ ∣ τ ˙ ⃗ = ∣ v ˙ ⃗ ∣ τ ⃗ + ∣ v ⃗ ∣ 2 κ n ⃗ = ∣ v ˙ ⃗ ∣ τ ⃗ + ∣ v ⃗ ∣ 2 ρ n ⃗ \begin{aligned} \vec{a}&=\frac{d\vec{v}}{dt}=\frac{d|\vec{v}|\vec{\tau}}{dt}=\frac{d|\vec{v}|}{dt}\vec{\tau}+|\vec{v}|\frac{d\vec{\tau}}{dt}\\ &=|\vec{\dot{v}}|\vec{\tau}+|\vec{v}|\vec{\dot{\tau}}\\ &=|\vec{\dot{v}}|\vec{\tau}+|\vec{v}|^2\kappa \vec{n}\\ &=|\vec{\dot{v}}|\vec{\tau}+\frac{|\vec{v}|^2}{\rho}\vec{n}\\ \end{aligned} a =dtdv =dtdv τ =dtdv τ +v dtdτ =v˙ τ +v τ˙ =v˙ τ +v 2κn =v˙ τ +ρv 2n   其中,曲率半径 ρ = 1 κ \rho =\frac{1}{\kappa} ρ=κ1,在本例中为负值, ∣ v ˙ ⃗ ∣ τ ⃗ |\vec{\dot{v}}|\vec \tau v˙ τ 为切向加速度, ∣ v ⃗ ∣ 2 ρ n ⃗ \frac{|\vec{v}|^2}{\rho}\vec{n} ρv 2n 为法向加速度,即向心加速度。


六、预备知识总结

  这些公式是以后推导坐标转换时非常有用的辅助公式。
在这里插入图片描述

6.1 变量含义

  以下变量都以笛卡尔坐标为基准

变量含义变量含义
r ⃗ h \vec r_h r h车辆位矢 r ⃗ r \vec r_r r r投影位矢
v ⃗ \vec v v 车辆速度 s ˙ \dot s s˙投影速率
a ⃗ \vec a a 车辆加速度 κ r \kappa_r κr投影位矢在道路几何上的曲率
κ h \kappa_h κh车辆位矢在车辆轨迹上的曲率 τ ⃗ r \vec \tau_r τ r投影位矢在道路几何上的切线方向单位向量
τ ⃗ h \vec \tau_h τ h车辆位矢在车辆轨迹上的切线方向单位向量 n ⃗ r \vec n_r n r投影位矢在道路几何上的法线方向单位向量
n ⃗ h \vec n_h n h车辆位矢在车辆轨迹上的法线方向单位向量

6.2 辅助公式

   7 7 7 个辅助公式是求自然坐标和直角坐标之间转化的关键:

r ˙ ⃗ h = ∣ v ⃗ ∣ τ ⃗ h r ˙ ⃗ r = s ˙ τ ⃗ r τ ˙ ⃗ h = κ h ∣ v ⃗ ∣ n ⃗ h n ˙ ⃗ h = − κ h ∣ v ⃗ ∣ τ ⃗ h τ ˙ ⃗ r = κ r s ˙ n ⃗ r n ˙ ⃗ r = − κ r s ˙ τ ⃗ r a ⃗ = ∣ v ˙ ⃗ ∣ τ ⃗ h + ∣ v ⃗ ∣ 2 κ h n ⃗ h \begin{align} \vec{\dot{r}}_h&=|\vec{v}|\vec{\tau}_h\\ \vec{\dot{r}}_r&=\dot{s}\vec{\tau}_r\\ \vec{\dot{\tau}}_h&=\kappa _h|\vec{v}|\vec{n}_h\\ \vec{\dot{n}}_h&=-\kappa _h|\vec{v}|\vec{\tau}_h\\ \vec{\dot{\tau}}_r&=\kappa _r\dot{s}\vec{n}_r\\ \vec{\dot{n}}_r&=-\kappa _r\dot{s}\vec{\tau}_r\\ \vec{a}&=|\vec{\dot{v}}|\vec{\tau}_h+|\vec{v}|^2\kappa _h\vec{n}_h\\ \end{align} r˙ hr˙ rτ˙ hn˙ hτ˙ rn˙ ra =v τ h=s˙τ r=κhv n h=κhv τ h=κrs˙n r=κrs˙τ r=v˙ τ h+v 2κhn h  有了这 7 7 7 个辅助公式,后面一切推导都水到渠成,就是微积分的计算。


七、坐标转换算法

7.1 问题描述

  问题非常明晰了:
在这里插入图片描述

  已知笛卡尔坐标下的 r ⃗ h , v ⃗ h , a ⃗ h , κ h , τ ⃗ h , n ⃗ h \vec{r}_h,\vec{v}_h,\vec{a}_h,\kappa _h,\vec{\tau}_h,\vec{n}_h r h,v h,a h,κh,τ h,n h

  已知 Frenet 坐标系下的起点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)

  求 Frenet 坐标系下的 s , s ˙ , s ¨ , l , l ′ , l ′ ′ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime} s,s˙,s¨,l,l,l′′。其中, s ˙ = d s d t \dot s=\frac{ds}{dt} s˙=dtds l ′ = d l d s l'=\frac{dl}{ds} l=dsdl d s ds ds 为 Frenet 坐标轴的弧长。

7.2 坐标转换算法步骤概述

  算法分三步:

  第一步 7 7 7 个辅助公式

  第二步:找到车在Frenet坐标系下的投影点在笛卡尔坐标系下的坐标,记为 x r , y r , θ r , k r {x_r,y_r,\theta_r,k_r} xr,yr,θr,kr

  计算
r ⃗ r = ( x r , y r ) τ ⃗ r = ( cos ⁡ θ r , sin ⁡ θ r ) n ⃗ r = ( − sin ⁡ θ r , cos ⁡ θ r ) \vec{r}_r=\left( x_r,y_r \right) \quad \vec{\tau}_r=\left( \cos \theta _r,\sin \theta _r \right) \quad \vec{n}_r=\left( -\sin \theta _r,\cos \theta _r \right) r r=(xr,yr)τ r=(cosθr,sinθr)n r=(sinθr,cosθr)  其中, θ r \theta_r θr 代表投影点的切线方向 τ ⃗ r \vec \tau_r τ r x x x 轴的夹角,如下图所示:
在这里插入图片描述

  第三步:利用向量三角形以及微积分求出 s , s ˙ , s ¨ , l , l ′ , l ′ ′ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime} s,s˙,s¨,l,l,l′′

7.3 核心公式及其应用

  由向量三角形关系得到坐标转换的核心公式:
r r ⃗ + l n ⃗ r = r ⃗ h \vec{r_r}+l\vec{n}_r=\vec{r}_h rr +ln r=r h  但公式目前还不能直接用,因为 r r ⃗ \vec{r_r} rr n ⃗ r \vec{n}_r n r 都不知道,知道的只有 r ⃗ h , v ⃗ h , a ⃗ h , κ h , τ ⃗ h , n ⃗ h \vec{r}_h,\vec{v}_h,\vec{a}_h,\kappa _h,\vec{\tau}_h,\vec{n}_h r h,v h,a h,κh,τ h,n h

  首先要找到投影,即 ( x h , y h ) (x_h,y_h) (xh,yh)在 Frenet 坐标系下的投影 ( x r , y r , θ r , κ r ) (x_r,y_r,\theta_r,\kappa_r) (xr,yr,θr,κr),但在这里先不讲,假设已经找到了 ( x r , y r , θ r , κ r ) (x_r,y_r,\theta_r,\kappa_r) (xr,yr,θr,κr)。找投影的过程下一节再讲,因为找投影比较绕。

  如果找到投影点的信息,自然可以得到 r ⃗ r , τ ⃗ r , n ⃗ r , κ r \vec{r}_r,\vec{\tau}_r,\vec{n}_r,\kappa _r r r,τ r,n r,κr

  有了这些自然就可以用核心公式 r r ⃗ + l n ⃗ r = r ⃗ h \vec{r_r}+l\vec{n}_r=\vec{r}_h rr +ln r=r h

(1) 计算弧长

  第一步:计算 l l l,根据核心公式 l n ⃗ r = r ⃗ h − r r ⃗ l\vec{n}_r=\vec{r}_h-\vec{r_r} ln r=r hrr ,两边点乘 n ⃗ r \vec{n}_r n r
l = ( r ⃗ h − r ⃗ r ) ⋅ n ⃗ r l=\left( \vec{r}_h-\vec{r}_r \right) \cdot \vec{n}_r l=(r hr r)n r

(2) 计算弧速度

  第二步:计算 s ˙ \dot s s˙,核心公式 r r ⃗ + l n ⃗ r = r ⃗ h \vec{r_r}+l\vec{n}_r=\vec{r}_h rr +ln r=r h 两边对时间求导:
r ˙ ⃗ r + l n ˙ ⃗ r + l ˙ n ⃗ r = r ˙ ⃗ h \vec{\dot{r}}_r+l\vec{\dot{n}}_r+\dot{l}\vec{n}_r=\vec{\dot{r}}_h r˙ r+ln˙ r+l˙n r=r˙ h  利用辅助公式 ( 1 ) ( 2 ) ( 5 ) ( 6 ) (1)(2)(5)(6) (1)(2)(5)(6),代入得到:
s ˙ τ ⃗ r + l ( − κ r s ˙ τ ⃗ r ) + l ˙ n ⃗ r = v ⃗ h \dot{s}\vec{\tau}_r+l\left( -\kappa _r\dot{s}\vec{\tau}_r \right) +\dot{l}\vec{n}_r=\vec{v}_h s˙τ r+l(κrs˙τ r)+l˙n r=v h  两边同时点乘 τ ⃗ r \vec{\tau}_r τ r,得到
s ˙ + l ( − κ r s ˙ ) = v ⃗ h ⋅ τ ⃗ r \dot{s}+l\left( -\kappa _r\dot{s} \right) =\vec{v}_h\cdot \vec{\tau}_r s˙+l(κrs˙)=v hτ r  这样得到
s ˙ = v ⃗ h ⋅ τ ⃗ r 1 − k r l \dot{s}=\frac{\vec{v}_h\cdot \vec{\tau}_r}{1-k_rl} s˙=1krlv hτ r  又因为
v ⃗ h ⋅ τ ⃗ r = ∣ v ⃗ h ∣ τ ⃗ h ⋅ τ ⃗ r = ∣ v ⃗ h ∣ ∣ τ ⃗ h ∣ ∣ τ ⃗ r ∣ cos ⁡ < τ ⃗ h , τ ⃗ r > = ∣ v ⃗ h ∣ cos ⁡ ( θ h − θ r ) \vec{v}_h\cdot \vec{\tau}_r=|\vec{v}_h|\vec{\tau}_h\cdot \vec{\tau}_r=|\vec{v}_h||\vec{\tau}_h||\vec{\tau}_r|\cos <\vec{\tau}_h,\vec{\tau}_r>=|\vec{v}_h|\cos \left( \theta _h-\theta _r \right) v hτ r=v hτ hτ r=v h∣∣τ h∣∣τ rcos<τ h,τ r>=v hcos(θhθr)  得到另一种形式:
s ˙ = ∣ v ⃗ h ∣ cos ⁡ ( θ h − θ r ) 1 − κ r l \dot{s}=\frac{|\vec{v}_h|\cos \left( \theta _h-\theta _r \right)}{1-\kappa _rl} s˙=1κrlv hcos(θhθr)  推荐使用上面的向量法表示,更简洁。

(3) 计算弧长的时间导数

  第三步:计算 l ˙ \dot l l˙,由第二步推导的 s ˙ τ ⃗ r + l ( − κ r s ˙ τ ⃗ r ) + l ˙ n ⃗ r = v ⃗ h \dot{s}\vec{\tau}_r+l\left( -\kappa _r\dot{s}\vec{\tau}_r \right) +\dot{l}\vec{n}_r=\vec{v}_h s˙τ r+l(κrs˙τ r)+l˙n r=v h,两边同时点乘 n ⃗ r \vec n_r n r 得:
l ˙ = v ⃗ h ⋅ n ⃗ r \dot l=\vec v_h \cdot \vec n_r l˙=v hn r  若将向量形式展开,得到 l ˙ = ∣ v ⃗ h ∣ sin ⁡ ( θ h − θ r ) \dot l=|\vec{v}_h|\sin( \theta _h-\theta _r) l˙=v hsin(θhθr)

(4) 计算弧长的弧坐标导数

  第四步:计算 l ′ l' l
l ′ = d l d s = d l d t d s d t = l ˙ s ˙ = v ⃗ ⋅ n ⃗ r v ⃗ ⋅ τ ⃗ r 1 − κ r l = ( 1 − κ r l ) v ⃗ ⋅ n ⃗ r v ⃗ ⋅ τ ⃗ r l'=\frac{dl}{ds}=\frac{\frac{dl}{dt}}{\frac{ds}{dt}}=\frac{\dot{l}}{\dot{s}}=\frac{\vec{v}\cdot \vec{n}_r}{\frac{\vec{v}\cdot \vec{\tau}_r}{1-\kappa _rl}}=\left( 1-\kappa _rl \right) \frac{\vec{v}\cdot \vec{n}_r}{\vec{v}\cdot \vec{\tau}_r} l=dsdl=dtdsdtdl=s˙l˙=1κrlv τ rv n r=(1κrl)v τ rv n r其中, d s ds ds 为 Frenet 坐标轴的弧坐标导数,因此 d s d t = s ˙ \frac{ds}{dt}=\dot s dtds=s˙

(5) 计算弧加速度

  第五步:计算 s ¨ \ddot s s¨,由第二步计算的 s ˙ = v ⃗ h ⋅ τ ⃗ r 1 − k r l \dot{s}=\frac{\vec{v}_h\cdot \vec{\tau}_r}{1-k_rl} s˙=1krlv hτ r,利用复合求导,得到:

s ¨ = d s ˙ d t = 1 ( 1 − κ r l ) 2 ( d ( v ⃗ ⋅ τ ⃗ r ) d t ⋅ ( 1 − κ r l ) − ( v ⃗ ⋅ τ ⃗ r ) ⋅ ( − κ ˙ r l − κ r l ˙ ) ) = 1 1 − κ r l ( d v ⃗ d t ⋅ τ ⃗ r + v ⃗ ⋅ d τ ⃗ r d t ) + 1 1 − κ r l v ⃗ ⋅ τ ⃗ r 1 − κ r l ( κ ˙ r l + κ r l ˙ ) = 1 1 − κ r l ( a ⃗ ⋅ τ ⃗ r + v ⃗ ⋅ ( κ r ⋅ s ˙ ⋅ n ⃗ r ) + 1 1 − κ r l s ˙ ( d κ r d s d s d t l + κ r ⋅ d l d s ⋅ d s d t ) = a ⃗ ⋅ τ ⃗ r 1 − κ r l + ( κ r s ˙ ) ( v ⃗ ⋅ n ⃗ r ) 1 − κ r l + s ˙ 2 1 − κ r l ( κ r ′ l + κ r l ′ ) \begin{aligned} \ddot{s}&=\frac{\text{d}\dot{s}}{\text{d}t}=\frac{1}{\left( 1-\kappa _rl \right) ^2}\left( \frac{\text{d}\left( \vec{v}\cdot \vec{\tau}_r \right)}{\text{d}t}\cdot \left( 1-\kappa _rl \right) -\left( \vec{v}\cdot \vec{\tau}_r \right) \cdot \left( -\dot{\kappa}_rl-\kappa _r\dot{l} \right) \right)\\ &=\frac{1}{1-\kappa _rl}\left( \frac{d\vec{v}}{dt}\cdot \vec{\tau}_r+\vec{v}\cdot \frac{d\vec{\tau}_r}{dt} \right) +\frac{1}{1-\kappa _rl}\frac{\vec{v}\cdot \vec{\tau}_r}{1-\kappa _rl}\left( \dot{\kappa}_rl+\kappa _r\dot{l} \right)\\ &=\frac{1}{1-\kappa _rl}\text{(}\vec{a}\cdot \vec{\tau}_r+\vec{v}\cdot \left( \kappa _r\cdot \dot{s}\cdot \vec{n}_r \right) +\frac{1}{1-\kappa _rl}\dot{s}\left( \frac{d\kappa _r}{ds}\frac{ds}{dt}l+\kappa _r\cdot \frac{dl}{ds}\cdot \frac{ds}{dt} \right)\\ &=\frac{\vec{a}\cdot \vec{\tau}_r}{1-\kappa _rl}+\frac{\left( \kappa _r\dot{s} \right) \left( \vec{v}\cdot \vec{n}_r \right)}{1-\kappa _rl}+\frac{\dot{s}^2}{1-\kappa _rl}\left( \kappa _{r}'l+\kappa _rl' \right)\\ \end{aligned} s¨=dtds˙=(1κrl)21(dtd(v τ r)(1κrl)(v τ r)(κ˙rlκrl˙))=1κrl1(dtdv τ r+v dtdτ r)+1κrl11κrlv τ r(κ˙rl+κrl˙)=1κrl1(a τ r+v (κrs˙n r)+1κrl1s˙(dsdκrdtdsl+κrdsdldtds)=1κrla τ r+1κrl(κrs˙)(v n r)+1κrls˙2(κrl+κrl)  又因为 v ⃗ ⋅ n ⃗ r = l ˙ , l ˙ = l ′ ⋅ s ˙ \vec{v}\cdot \vec{n}_r=\dot{l}, \dot{l}=l'\cdot \dot{s} v n r=l˙l˙=ls˙,代入最终得到
s ¨ = a ⃗ ⋅ τ ⃗ r 1 − κ r l + κ r s ˙ 2 l ′ 1 − κ r l + s ˙ 2 1 − κ r l ( κ r ′ l + κ r l ′ ) \ddot{s}=\frac{\vec{a}\cdot \vec{\tau}_r}{1-\kappa _rl}+\frac{\kappa _r\dot{s}^2l'}{1-\kappa _rl}+\frac{\dot{s}^2}{1-\kappa _rl}\left( \kappa _{r}'l+\kappa _rl' \right) s¨=1κrla τ r+1κrlκrs˙2l+1κrls˙2(κrl+κrl)  其中, a ⃗ ⋅ τ ⃗ r \vec{a}\cdot \vec{\tau}_r a τ r 的计算如下,利用辅助公式 ( 7 ) (7) (7) a ⃗ = ∣ v ˙ ⃗ ∣ τ ⃗ h + ∣ v ⃗ ∣ 2 κ h n ⃗ h \vec{a}=|\vec{\dot{v}}|\vec{\tau}_h+|\vec{v}|^2\kappa _h\vec{n}_h a =v˙ τ h+v 2κhn h,可得
a ⃗ ⋅ τ ⃗ r = ∣ v ˙ ⃗ ∣ cos ⁡ < τ ⃗ h , τ ⃗ r > + ∣ v ⃗ ∣ 2 κ h n ⃗ h ⋅ τ ⃗ r = ∣ v ˙ ⃗ ∣ cos ⁡ ( θ h − θ r ) + κ h ⋅ ( 1 − κ r l ) 2 cos ⁡ 2 ( θ h − θ r ) s ˙ 2 ⋅ ( − sin ⁡ ( θ h − θ r ) ) = ∣ v ˙ ⃗ ∣ cos ⁡ ( θ h − θ r ) + κ h s ˙ 2 1 − κ r l cos ⁡ ( θ n − θ r ) ⋅ ( − l ′ ) \begin{aligned} \vec{a}\cdot \vec{\tau}_r&=|\vec{\dot{v}}|\cos <\vec{\tau}_h,\vec{\tau}_r>+|\vec{v}|^2\kappa _h\vec{n}_h\cdot \vec{\tau}_r\\ &=|\vec{\dot{v}}|\cos \left( \theta _h-\theta _r \right) +\kappa _h\cdot \frac{\left( 1-\kappa _rl \right) ^2}{\cos ^2\left( \theta _h-\theta _r \right)}\dot{s}^2\cdot \left( -\sin \left( \theta _h-\theta _r \right) \right)\\ &=|\vec{\dot{v}}|\cos \left( \theta _h-\theta _r \right) +\kappa_h\dot{s}^2\frac{1-\kappa _rl}{\cos \left( \theta _n-\theta _r \right)}\cdot \left( -l' \right)\\ \end{aligned} a τ r=v˙ cos<τ h,τ r>+v 2κhn hτ r=v˙ cos(θhθr)+κhcos2(θhθr)(1κrl)2s˙2(sin(θhθr))=v˙ cos(θhθr)+κhs˙2cos(θnθr)1κrl(l)

(6) 计算弧长的二阶时间导数

  第六步:计算 l ¨ \ddot l l¨,由辅助公式 ( 3 ) (3) (3) l ˙ = v ⃗ ⋅ n ⃗ r \dot l=\vec v \cdot \vec n_r l˙=v n r 可得:
l ¨ = d v ⃗ d t ⋅ n r ⃗ + v ⃗ ⋅ d n ⃗ r d t \ddot{l}=\frac{d\vec{v}}{dt}\cdot \vec{n_r}+\vec{v}\cdot \frac{d\vec{n}_r}{dt} l¨=dtdv nr +v dtdn r  由辅助公式 ( 6 ) (6) (6) n ⃗ r = − κ r s ˙ τ ⃗ r \vec{n}_r=-\kappa _r\dot{s}\vec{\tau}_r n r=κrs˙τ r 可得:
l ¨ = a ⃗ ⋅ n ⃗ r + v ⃗ ⋅ ( − κ r s ˙ τ ⃗ r ) = a ⃗ ⋅ n ⃗ r − κ r s ˙ ( v ⃗ ⋅ τ ⃗ r ) = a ⃗ ⋅ n ⃗ r − κ r ( 1 − κ r l ) s ˙ 2 \begin{aligned} \ddot{l}&=\vec{a}\cdot \vec{n}_r+\vec{v}\cdot \left( -\kappa _r\dot{s}\vec{\tau}_r \right)\\ &=\vec{a}\cdot \vec{n}_r-\kappa _r\dot{s}\left( \vec{v}\cdot \vec{\tau}_r \right)\\ &=\vec{a}\cdot \vec{n}_r-\kappa _r\left( 1-\kappa _rl \right) \dot{s}^2\\ \end{aligned} l¨=a n r+v (κrs˙τ r)=a n rκrs˙(v τ r)=a n rκr(1κrl)s˙2

(7) 计算弧长的二阶弧坐标导数

  第七步:计算 l ′ ′ l'' l′′,用 l ¨ \ddot l l¨ 计算:
l ¨ = d l ˙ d t = d ( l ′ s ˙ ) d t = d l ′ d t s ˙ + l ′ ⋅ s ¨ = d l ′ d s ⋅ d s d t ⋅ s ˙ + l ′ s ¨ = l ′ ‘ s ˙ 2 + l ′ s ¨ \begin{aligned} \ddot{l}&=\frac{d\dot{l}}{dt}=\frac{d\left( l'\dot{s} \right)}{dt}=\frac{dl'}{dt}\dot{s}+l'\cdot \ddot{s}\\ &=\frac{dl'}{ds}\cdot \frac{ds}{dt}\cdot \dot{s}+l'\ddot{s}\\ &=l'‘\dot{s}^2+l'\ddot{s}\\ \end{aligned} l¨=dtdl˙=dtd(ls˙)=dtdls˙+ls¨=dsdldtdss˙+ls¨=ls˙2+ls¨  所以:
l ′ ′ = l ¨ − l ′ s ¨ s ˙ 2 l''=\frac{\ddot{l}-l'\ddot{s}}{\dot{s}^2} l′′=s˙2l¨ls¨  这样基本上所有直角坐标转自然坐标都已讲完。


八、总结

  共有 8 8 8 个坐标需要转化,即 s , s ˙ , s ¨ , l , l ′ , l ′ ′ , l ˙ , l ¨ s,\dot{s},\ddot{s},l,l^{\prime},l^{\prime\prime},\dot l,\ddot l s,s˙,s¨,l,l,l′′,l˙,l¨ ,总结公式如下:
l = ( r ⃗ h − r ⃗ r ) ⋅ n ⃗ r l ˙ = v ⃗ ⋅ n ⃗ r s ˙ = v ⃗ ⋅ τ ⃗ r 1 − κ r l l ′ = l ˙ s ˙ l ¨ = a ⃗ ⋅ n ⃗ r − κ r ( 1 − κ r l ) s ˙ 2 s ¨ = a ⃗ ⋅ τ ⃗ r 1 − κ r l + s ˙ 2 κ r l ′ 1 − κ r l + s ˙ 2 ( κ r ′ l + κ r l ′ ) 1 − κ r l l ′ ′ = l ¨ − l ′ s ¨ s ˙ 2 \begin{aligned} l&=\left( \vec{r}_h-\vec{r}_r \right) \cdot \vec{n}_r\\ \dot{l}&=\vec{v}\cdot \vec{n}_r\\ \dot{s}&=\frac{\vec{v}\cdot \vec{\tau}_r}{1-\kappa _rl}\\ l'&=\frac{\dot{l}}{\dot{s}}\\ \ddot{l}&=\vec{a}\cdot \vec{n}_r-\kappa _r\left( 1-\kappa _rl \right) \dot{s}^2\\ \ddot{s}&=\frac{\vec{a}\cdot \vec{\tau}_r}{1-\kappa _rl}+\frac{\dot{s}^2\kappa _rl'}{1-\kappa _rl}+\frac{\dot{s}^2\left( \kappa _{r}'l+\kappa _rl' \right)}{1-\kappa _rl}\\ l''&=\frac{\ddot{l}-l'\ddot{s}}{\dot{s}^2}\\ \end{aligned} ll˙s˙ll¨s¨l′′=(r hr r)n r=v n r=1κrlv τ r=s˙l˙=a n rκr(1κrl)s˙2=1κrla τ r+1κrls˙2κrl+1κrls˙2(κrl+κrl)=s˙2l¨ls¨  现在算出了 7 7 7 个,还差 s s s 没算, s s s 和投影点相关。

  本篇博客讲解了从直角坐标转换到自然坐标,下一篇博客讲解 s s s 如何计算,以及投影点怎么找,如何从自然坐标转换到直角坐标。

  本篇博客到此结束,欢迎关注后续内容!


参考资料

  自动驾驶决策规划算法第一章第三节(上) 直角坐标与自然坐标转换


后记:

🌟 感谢您耐心阅读这篇关于 直角坐标与自然坐标转换Ⅰ 的技术博客。 📚

🎯 如果您觉得这篇博客对您有所帮助,请不要吝啬您的点赞和评论 📢

🌟您的支持是我继续创作的动力。同时,别忘了收藏本篇博客,以便日后随时查阅。🚀

🚗 让我们一起期待更多的技术分享,共同探索移动机器人的无限可能!💡

🎭感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行 🚀


http://www.ppmy.cn/ops/109667.html

相关文章

swc 编译 es6为commonjs

如果直接写es6后运行node index.js 报错&#xff1a;SyntaxError: Cannot use import statement outside a module js 我们这里使用swc来将es6编译成CommonJS。 以后可以作为一个简单的框架模版使用。 安装 pnpm add swc/cli swc/core 配置.swcrc {"$schema": &q…

三维数字图像相关法(3D-DIC)用于复合材料力学性能测试

三维数字图像相关法&#xff08;3D-DIC技术&#xff09;&#xff0c;通过将物体表面随机分布的斑点或伪随机分布的人工散斑场作为变形信息载体&#xff0c;是应用于计算机视觉技术的一种图像测量方法&#xff0c;是一种非接触的&#xff0c;用于全场三维坐标、位移、应变及运动…

设计模式 22 模板方法模式

设计模式 22 创建型模式&#xff08;5&#xff09;&#xff1a;工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式结构型模式&#xff08;7&#xff09;&#xff1a;适配器模式、桥接模式、组合模式、装饰者模式、外观模式、享元模式、代理模式行为型模式&#xff…

【EI会议征稿通知】第十一届机械工程、材料和自动化技术国际会议(MMEAT 2025)

第十一届机械工程、材料和自动化技术国际会议&#xff08;MMEAT 2025&#xff09; 2025 11th International Conference on Mechanical Engineering, Materials and Automation Technology 本次大会旨在汇聚全球机械工程、材料科学及自动化技术的创新学者和行业专家&#xff0…

vue3 指定元素全屏 screenfull(可直接粘贴使用)

业务需求 由于输入的文字较多&#xff0c;需要将输入框进行全屏展示&#xff0c;方便输入和查看&#xff01; 效果图 实现方式 下载插件"screenfull": “^6.0.2” yarn add screenfull -S项目中使用 import screenfull from "screenfull"templte中代码…

亚马逊IP关联及其解决方案

在电子商务领域&#xff0c;亚马逊作为全球领先的在线购物平台&#xff0c;吸引了众多商家和个人的参与。然而&#xff0c;随着业务规模的扩大&#xff0c;商家在使用亚马逊服务时可能会遇到IP关联的问题&#xff0c;这不仅影响账户的正常运营&#xff0c;还可能带来一系列不利…

@35岁的网安人 答应我拿下这些证书

一、CISP注册信息安全专业人员 注册信息安全专业人员(Certified Information Security Professional&#xff0c;简称“CISP")&#xff0c;中国信息安全测评中心依据中编办赋予的职能&#xff0c;建立和发展的一整套完整的信息安全保障人才培训体系。CISP证书是国家对信息…

联邦迁移学习

Finetune&#xff08;微调&#xff09; 和 Fixed Feature Extractor&#xff08;固定特征提取器&#xff09; 确实有相似之处&#xff0c;但它们的关键区别在于模型参数的调整范围和任务的相似性。 区别&#xff1a; Finetune&#xff08;微调&#xff09;&#xff1a; 所有层…