【数学建模学习手册】python基本入门使用

ops/2024/11/9 16:46:03/

本专栏内容为:数学建模原理 记录学习数学建模

💓博主csdn个人主页:小小unicorn
⏩专栏分类:数学建模
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

目录

  • numpy库
    • 导入
    • 数组创建
      • 示例1:
      • 示例2:
    • 数组元素索引:
      • 示例:
    • 矩阵运算与线性代数
    • 求解线性方程组的唯一解
      • 例1:求解线性方程组:
    • 求超定方程组的最小二乘解
      • 例2:求解线性方程组:
        • 第一种:
        • 第二种:
        • 两种方法的比较:
      • 什么是超定方程?
    • 求矩阵的特征值特征向量:
  • Pandas库
    • 生成二维数组:
    • 读写文件
    • 数据预处理:
  • SciPy库
    • 求解非线性方程组
    • 积分:
    • 最小二乘解
    • 求矩阵最大模特征值与特征向量
  • SymPy库
    • 例1:求符号解
    • 例2:求符号解
    • 例3:求矩阵的特征值与特征向量(符号解)
  • Matplotlib库
    • 子图:
    • 三维绘图
      • 例1:三维曲线

numpy库

导入

python">import numpy as 

数组创建

在这里插入图片描述

示例1:

python">import numpy as np
a1 = np.array([1, 2, 3, 4])   #生成整型数组
a2 = a1.astype(float)
a3 = np.array([1, 2, 3, 4], dtype=float)   #浮点数
print(a1.dtype); print(a2.dtype); print(a3.dtype)
b = np.array([[1, 2, 3], [4, 5, 6]])
c = np.arange(1,5)        #生成数组[1, 2, 3, 4]
d = np.linspace(1, 4, 4)  #生成数组[1, 2, 3, 4]
e = np.logspace(1, 3, 3, base=2)  #生成数组[2, 4, 8]
print(b)
print(c)
print(d)
print(e)

示例2:

python">import numpy as np
a = np.ones(4, dtype=int)     #输出[1, 1, 1, 1]
b = np.ones((4,), dtype=int)  #同a
c= np.ones((4,1))             #输出4行1列的数组
d = np.zeros(4)               #输出[0, 0, 0, 0]
e = np.empty(3)               #生成3个元素的空数组行向量
f = np.eye(3)                 #生成3阶单位阵
g = np.eye(3, k=1)  #生成第k对角线的元素为1,其他元素为0的3阶方阵
h = np.zeros_like(a)          #生成与a同维数的全0数组

数组元素索引:

在这里插入图片描述

示例:

python">import numpy as np
a = np.arange(16).reshape(4,4)  #生成4行4列的数组
b = a[1][2]   #输出6
c = a[1, 2]   #同b
d = a[1:2, 2:3]  #输出[[6]]
x = np.array([0, 1, 2, 1])
print(a[x==1])  #输出a的第2、4行元素

在这里插入图片描述

矩阵运算与线性代数

线性代数只要使用numpy.linalg模块,其常用函数如下:
在这里插入图片描述

求解线性方程组的唯一解

例1:求解线性方程组:

在这里插入图片描述
代码:

python">import numpy as np
a = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x1 = np.linalg.inv(a) @ b  #第一种解法
#上面语句中@表示矩阵乘法
x2 = np.linalg.solve(a, b) #第二种解法
print(x1); print(x2)

结果:
在这里插入图片描述

求超定方程组的最小二乘解

例2:求解线性方程组:

在这里插入图片描述
代码:

第一种:
python">import numpy as np
a = np.array([[3, 1], [1, 2], [1, 1]])
b = np.array([9, 8, 6])
#a*b
x = np.linalg.pinv(a) @ b  
print("求得的最小二乘解为:")
print(np.round(x, 4))
第二种:

使用 lstsq 求解最小二乘问题:

  • a: 系数矩阵。
  • b: 右侧的结果向量。
  • rcond: 用来裁剪奇异值的一个参数(可以先设置为 None,默认行为会使用合理的值)

lstsq 函数返回四个值:

  • x: 最小二乘解,即满足 a @ x ≈ b 的解。
  • residuals: 残差的平方和。如果方程是过定的(更多的方程比未知数多),这个值才有意义。
  • rank: 矩阵 a 的秩。
  • s: a 的奇异值。
python">import numpy as np
a = np.array([[3, 1], [1, 2], [1, 1]])
b = np.array([9, 8, 6])
x, residuals, rank, s = np.linalg.lstsq(a, b, rcond=None)
print("求得的最小二乘解为:")
#round对数组中的每个元素进行四舍五入。4就是保留四位
print(np.round(x, 4))
两种方法的比较:
  • pinv 方法:先通过 np.linalg.pinv(a) 求解 a 的伪逆矩阵,再用矩阵乘法 @ 乘以向量 b 来得到最小二乘解。适合直接计算伪逆矩阵的场合。

  • lstsq 方法:直接求解最小二乘解,它比伪逆法更高效,因为它不需要显式计算伪逆矩阵,并且提供了残差、矩阵秩等额外信息。

  • 在数值精度和计算效率上,lstsq 通常表现得更好,尤其是当矩阵 a 较大时

结果:
在这里插入图片描述

什么是超定方程?

超定线性方程组(overdetermined system of linear equations)指的是方程的数量多于未知数的线性方程组。这意味着方程的数量 mmm 大于未知数的数量 nnn(即 m>nm > nm>n)。

特点:

  • 方程数量多于未知数:这类方程组往往没有精确的解,因为过多的方程对未知数施加了更多的约束条件,这些条件可能互相矛盾,无法同时满足。
  • 无法精确求解:由于不可能满足所有方程,通常需要使用最小二乘法等数值方法来找到使方程“近似成立”的解。这种解不是精确解,而是尽可能让方程残差(误差)最小的解。

例子:
在这里插入图片描述
在这里插入图片描述

求矩阵的特征值特征向量:

例1:
在这里插入图片描述
代码:

python">import numpy as np#它创建一个 4x4 的单位矩阵
#单位矩阵的定义是:对角线上(从左上到右下)所有元素为 1,其余元素为 0。
a = np.eye(4)
# a = [[1. 0. 0. 0.]
#      [0. 1. 0. 0.]
#      [0. 0. 1. 0.]
#      [0. 0. 0. 1.]]#将矩阵逆时针旋转 90 度
b = np.rot90(a)
# b = [[0. 0. 0. 1.]
#      [0. 0. 1. 0.]
#      [0. 1. 0. 0.]
#      [1. 0. 0. 0.]]#如果想顺时针旋转90度,加上一个参数k=-1;
# b=np.rot90(a,-1)
# b = [[0. 0. 0. 1.]
#      [0. 0. 1. 0.]
#      [0. 1. 0. 0.]
#      [1. 0. 0. 0.]]#顺时针旋转与逆时针旋转的关系:
#顺时针旋转 90 度相当于逆时针旋转 270 度。因此,你也可以通过 np.rot90(a, k=3) 达到相同的效果。
c, d = np.linalg.eig(b)
print('特征值为:', c)
print('特征向量为:\n', d)

结果:
在这里插入图片描述

Pandas库

在这里插入图片描述

生成二维数组:

例1:生成服从标准正态分布的24x4随机数矩阵,并保存为DataFrame数据结构

python">import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))# 数据写入文件实例
a1.to_excel('data2_4_1.xlsx')  # 保存到 Excel
a2.to_csv('data2_4_2.csv')     # 保存到 CSV
#不包含行索引时
a1.to_excel('data2_4_1.xlsx', index=False)  # 保存到 Excel,不包含行索引
a2.to_csv('data2_4_2.csv', index=False)     # 保存到 CSV,不包含行索引

读写文件

在这里插入图片描述
例2:写入文件

python">import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))# 数据写入文件实例
a1.to_excel('data2_4_1.xlsx')  # 保存到 Excel
a2.to_csv('data2_4_2.csv')     # 保存到 CSV
#不包含行索引时
a1.to_excel('data2_4_1.xlsx', index=False)  # 保存到 Excel,不包含行索引
a2.to_csv('data2_4_2.csv', index=False)     # 保存到 CSV,不包含行索引
# 使用 with 语句创建 ExcelWriter 对象
with pd.ExcelWriter('data2_4_3.xlsx') as writer:a1.to_excel(writer, sheet_name="Sheet1")  # 把a1写入Excel文件的Sheet1a2.to_excel(writer, sheet_name="Sheet2")  # 把a2写入另一个表单Sheet2
# 文件会自动保存和关闭,无需显式调用 save() 方法

结果:
在这里插入图片描述
在这里插入图片描述
如果写入数据时,不包含行索引:

python">import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))#不包含行索引时
a1.to_excel('data2_4_4.xlsx', index=False)  # 保存到 Excel,不包含行索引   header=False  不包含列索引
a2.to_csv('data2_4_5.csv', index=False)     # 保存到 CSV,不包含行索引
# 使用 with 语句创建 ExcelWriter 对象
with pd.ExcelWriter('data2_4_6.xlsx') as writer:a1.to_excel(writer, sheet_name="Sheet1", index=False)  # 把a1写入Excel文件的Sheet1a2.to_excel(writer, sheet_name="Sheet2",index=False)  # 把a2写入另一个表单Sheet2

在这里插入图片描述
在这里插入图片描述

数据预处理:

在这里插入图片描述
例1:拆分,合并,分组计算

python">import pandas as pd
import numpy as np
d=pd.DataFrame(np.random.randint(1,6,(10,4)), columns=list("ABCD"))
d1=d[:4]  #获取前4行数据
d2=d[4:]  #获取第5行以后的数据
dd=pd.concat([d1,d2])   #数据行合并
s1=d.groupby('A').mean()      #数据分组求均值
s2=d.groupby('A').apply(sum)  #数据分组求和print(d,'\n')
print(d1,'\n')
print(d2,'\n')
print(dd,'\n')
print(s1,'\n')
print(s2,'\n')

结果:
在这里插入图片描述
在这里插入图片描述
例2:DataFrame数据操作示例
在这里插入图片描述

python">import pandas as pd
import numpy as np
a = pd.DataFrame(np.random.randint(1,6,(5,3)),index=['a', 'b', 'c', 'd', 'e'],columns=['one', 'two', 'three'])
a.loc['a', 'one'] = np.nan  #修改第1行第1列的数据
b = a.iloc[1:3, 0:2].values  #提取第2、3行,第1、2列数据
a['four'] = 'bar'  #增加第4列数据
a2 = a.reindex(['a', 'b', 'c', 'd', 'e', 'f'])
a3 = a2.dropna()   #删除有不确定值的行
print(a,'\n')
print(b,'\n')
print(a2,'\n')
print(a3,'\n')

在这里插入图片描述

SciPy库

模块功能表:
在这里插入图片描述

求解非线性方程组

求方程:
在这里插入图片描述
代码实现:

python">from scipy.optimize import fsolve, root
fx = lambda x:     x**980-5.01*x**979+7.398*x**978\-3.388*x**977-x**3+5.01*x**2-7.398*x+3.388
x1 = fsolve(fx, 1.5, maxfev=4000)  #函数调用4000次
x2 = root(fx, 1.5)
print(x1,'\n','-------------');print(x2)

在这里插入图片描述
注意:
在这里插入图片描述
例2:求下列方程组的一组数值解
在这里插入图片描述

python">from scipy.optimize import fsolve, root
fx = lambda x: [x[0]**2+x[1]**2-1, x[0]-x[1]]
#初始值为[1,1]
s1 = fsolve(fx, [1, 1])
s2 = root(fx, [1, 1])
print(s1,'\n','--------------'); print(s2)

在这里插入图片描述

积分:

例1:
在这里插入图片描述

python">from scipy.integrate import quad
def fun46(x, a, b):return a*x**2+b*x
I1 = quad(fun46, 0, 1, args=(2, 1))
I2 = quad(fun46, 0, 1, args=(2, 10))
print(I1); print(I2)

结果:
在这里插入图片描述
在这里插入图片描述

最小二乘解

在这里插入图片描述
例1:
在这里插入图片描述
在这里插入图片描述
代码:

python">from scipy.optimize import least_squares
import numpy as np
a=np.loadtxt('Z:\Code\python\建模培训2024\code\data2_47.txt')
x0=a[0]; y0=a[1]; d=a[2]
fx=lambda x: np.sqrt((x0-x[0])**2+(y0-x[1])**2)-d
s=least_squares(fx, np.random.rand(2))
print(s, '\n', '------------', '\n', s.x)

在这里插入图片描述

求矩阵最大模特征值与特征向量

在这里插入图片描述
代码:

python">from scipy.sparse.linalg import eigs
import numpy as npa = np.array([[1, 2, 3], [2, 1, 3], [3, 3, 6]], dtype=float)  #必须加float,否则出错
b, c = np.linalg.eig(a)
d, e = eigs(a, 1)
print('最大模特征值为:', d)
print('对应的特征向量为:\n', e)

在这里插入图片描述
在这里插入图片描述

SymPy库

定义符号变量或符号函数命令如下:
在这里插入图片描述

例1:求符号解

在这里插入图片描述

python">import sympy as sp
a, b, c, x=sp.symbols('a,b,c,x')
x0=sp.solve(a*x**2+b*x+c, x)
print(x0)

在这里插入图片描述

例2:求符号解

在这里插入图片描述
代码实现:

python">import sympy as sp
# sp.var('x1,x2')
# s=sp.solve([x1**2+x2**2-1,x1-x2],[x1,x2])
# print(s)
x1,x2=sp.symbols('x1,x2')
s=sp.solve([x1**2+x2**2-1,x1-x2],[x1,x2])
print(s)

在这里插入图片描述

例3:求矩阵的特征值与特征向量(符号解)

python">import numpy as np
import sympy as sp
a = np.identity(4)  #单位矩阵的另一种写法
b = np.rot90(a)
c = sp.Matrix(b)
print('特征值为:', c.eigenvals())
print('特征向量为:\n', c.eigenvects())

在这里插入图片描述

Matplotlib库

plot绘图常见的样式和颜色类型:
在这里插入图片描述
在这里插入图片描述
例1:
在这里插入图片描述代码:

python">import pandas as pd
import pylab as plt
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('font',size=16)  #设置显示字体大小
a=pd.read_excel("Z:\Code\python\建模培训2024\code\data2_52.xlsx", header=None)
b=a.values  #提取其中的数据
x=b[0]; y=b[1:]
#第三个参数。虚实线+形状+颜色
plt.plot(x,y[0],'-*b',label='钻石')
plt.plot(x,y[1],'--dr',label='铂金')
plt.xlabel('月份'); plt.ylabel('每月销量')
plt.legend(loc='upper left'); plt.grid(); plt.show()

在这里插入图片描述
例2:画出销售额的柱状图;

python">import pandas as pd
import pylab as plt
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('font',size=16)  #设置显示字体大小
a=pd.read_excel("Z:\Code\python\建模培训2024\code\data2_52.xlsx",header=None)
b=a.T
b.plot(kind='bar'); plt.legend(['钻石', '铂金'])
plt.xticks(range(6), b[0], rotation=0)
plt.ylabel('数量'); plt.show()

在这里插入图片描述

子图:

在这里插入图片描述
代码:

python">import pylab as plt
import numpy as np
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('axes',unicode_minus=False)
#生成随机数,进行归一化处理
y1=np.random.randint(2, 5, 6)
#使其和为1
y1=y1/sum(y1)
#创建第一个子图,水平条形图
# 在一个 2x2 的子图网格中创建第一个子图,位于第一个位置。
plt.subplot(2, 2, 1)
str=['苹果', '葡萄', '桃子', '梨', '香蕉', '菠萝']
plt.barh(str,y1)  #水平条形图
#创建第二个子图,饼图
plt.subplot(222)
plt.pie(y1, labels=str)  #饼图
#创建第三个子图,折线图
plt.subplot(212)
#生成一个包含 100 个点的数组,这些点均匀分布在 0.01 到 10 之间。
x2=np.linspace(0.01, 10, 100)
y2=np.sin(10*x2)/x2
plt.plot(x2,y2); plt.xlabel('$x$')
plt.ylabel('$\\mathrm{sin}(10x)/x$'); plt.show()

结果:
在这里插入图片描述

三维绘图

例1:三维曲线

在这里插入图片描述
代码:

python">import pylab as plt
import numpy as np
ax=plt.axes(projection='3d')  #设置三维图形模式
z=np.linspace(-50, 50, 1000)
x=z**2*np.sin(z); y=z**2*np.cos(z)
ax.plot(x, y, z, 'c')
plt.show()

在这里插入图片描述
例2:画出三维表面图:

python">import pylab as plt
import numpy as np
x=np.linspace(-4,4,100)
x,y=np.meshgrid(x,x)
z=50*np.sin(x+y)
ax=plt.axes(projection='3d')
ax.plot_surface(x, y, z, color='b')
plt.show()

在这里插入图片描述
例3:
在这里插入图片描述
代码:

python">import pylab as plt
import numpy as np
ax=plt.axes(projection='3d')
X = np.arange(-6, 6, 0.25)
Y = np.arange(-6, 6, 0.25)
X, Y = np.meshgrid(X, Y)
Z = np.sin(np.sqrt(X**2 + Y**2))
surf = ax.plot_surface(X, Y, Z, cmap='coolwarm')
#在图形旁边添加一个颜色条,用于表示不同颜色对应的 Z 值(即表面的高度)。
plt.colorbar(surf); plt.show()

在这里插入图片描述


http://www.ppmy.cn/ops/107865.html

相关文章

linux~~目录结构远程登录教程(xshell+xftp)

目录 1.目录结构 2.远程登录xshell 2.1所需工具 2.2了解虚拟机IP 2.3查看是否正常连接 2.4xshell进行连接 3.文件传输xftp7 3.1xftp6安装 3.2相关设置 3.3效果展示 3.4文件之间的传输过程 1.目录结构 bin目录里面主要存放这个我们经常使用的指令,例如这个…

指数分布的两种形式

指数分布是连续概率分布的一种&#xff0c;常用于描述等待时间、寿命等随机变量的分布。 1. 标准形式的指数分布 标准形式的指数分布的概率密度函数&#xff08;PDF&#xff09;为&#xff1a; f ( x ; λ ) { λ e − λ x if x ≥ 0 0 if x < 0 f(x; \lambda) \begi…

六,Spring Boot 容器中 Lombok 插件的详细使用,简化配置,提高开发效率

六&#xff0c;Spring Boot 容器中 Lombok 插件的详细使用&#xff0c;简化配置&#xff0c;提高开发效率 文章目录 六&#xff0c;Spring Boot 容器中 Lombok 插件的详细使用&#xff0c;简化配置&#xff0c;提高开发效率1. Lombok 介绍2. Lombok 常用注解2.1 ToString2.2 Se…

【音视频】播放音视频时发生了什么? 视频的编解码 H264是什么? MP4是什么?

目录 ✨播放一个视频的流程✨为什么要编码&#xff08;压缩&#xff09;视频数据&#xff1f;✨如何编码&#xff08;压缩&#xff09;数据&#x1f384;简单的例子&#x1f384;音视频编码方式&#x1f384;视频编码格式H264编码是什么&#xff1f;发展历程&#xff1f;H.264基…

标贝科技个性化音色定制方案 解锁语音合成无限可能

近日&#xff0c;标贝科技语音合成音色库又有新进展。针对智能客服场景&#xff0c;上新两个温和风格音色&#xff0c;适用于服务回访、业务咨询、产品介绍等细分业务场景。加上前不久的两款严肃客服音色&#xff0c;标贝科技已累计上线20多个风格迥异的男女客服发音人&#xf…

http和https区别

HTTP&#xff08;超文本传输协议&#xff09;和 HTTPS&#xff08;安全超文本传输协议&#xff09;是用于在互联网上传输数据的协议。它们之间的主要区别在于安全性&#xff1a; HTTP&#xff08;Hypertext Transfer Protocol&#xff09;: 加密: HTTP 不对传输的数据进行加密&…

前端代替后端做分页操作

如果后端没有分页api&#xff0c;前端如何做分页一、使用computed 这个变量应该是计算之后的值&#xff0c;是一个状态管理变量&#xff0c;跟onMounted类似import {computed} from vue // 定义ref储存rolelist&#xff0c;这里是原始数据 const roleList ref([])// 定义页码…

使用golang的AST编写定制化lint

什么是lint &#xff08;来自wiki&#xff09;在计算机科学中&#xff0c;lint是一种工具程序的名称&#xff0c;它用来标记源代码中&#xff0c;某些可疑的、不具结构性&#xff08;可能造成bug&#xff09;的段落。它是一种静态程序分析工具&#xff0c;最早适用于C语言&…