基于飞桨paddle波士顿房价预测练习模型测试代码

news/2024/12/29 10:00:20/

基于飞桨paddle波士顿房价预测练习模型测试代码
导入基础库

#paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework、paddle.device目录下的所有API;
import paddle
#Linear:神经网络的全连接层函数,包含所有输入权重相加的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)实现线性回归模型。
from paddle.nn import Linear
#paddle.nn:组网相关的API,包括 Linear、卷积 Conv2D、循环神经网络LSTM、损失函数CrossEntropyLoss、激活函数ReLU等;
#paddle.nn.functional:与paddle.nn一样,包含组网相关的API,如:Linear、激活函数ReLU等,二者包含的同名模块功能相同,运行性能也基本一致。 
#差别在于paddle.nn目录下的模块均是类,每个类自带模块参数;paddle.nn.functional目录下的模块均是函数,需要手动传入函数计算所需要的参数。
#在实际使用时,卷积、全连接层等本身具有可学习的参数,建议使用paddle.nn;而激活函数、池化等操作没有可学习参数,可以考虑使用paddle.nn.functional。
import paddle.nn.functional as F
#NumPy(Numerical Python的简称)是高性能科学计算和数据分析的基础包
import numpy as np
#os 操作系统库
import os
#random 椭机数库
import random

#数据处理

#数据处理
#====================================================
def load_data():# 从文件导入数据datafile = 'housing.data'data = np.fromfile(datafile, sep=' ', dtype=np.float32)# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 将原数据集拆分成训练集和测试集# 这里使用80%的数据做训练,20%的数据做测试# 测试集和训练集必须是没有交集的ratio = 0.8offset = int(data.shape[0] * ratio)    #404*0.8=323=offsettraining_data = data[:offset]      #获取-训练集# 计算train数据集的最大值,最小值maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesmax_values = maximumsmin_values = minimums# 对数据进行归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - min_values[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data
#==================================================== 
# 验证数据集读取程序的正确性
training_data, test_data = load_data()
print(training_data.shape)   #=(404, 14)
print(training_data[1,:])   

#模型设计

#模型设计
#==================================================== 
class Regressor(paddle.nn.Layer):# self代表类的实例自身def __init__(self):# 初始化父类中的一些参数super(Regressor, self).__init__()# 定义一层全连接层,输入维度是13,输出维度是1self.fc = Linear(in_features=13, out_features=1)# 网络的前向计算def forward(self, inputs):x = self.fc(inputs)return x
#==================================================== 

#训练配置

#训练配置 
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())    
#模型实例有两种状态:训练状态.train()和预测状态.eval()。
# 训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,
# 为模型指定运行状态,  **# 训练过程**
#训练过程采用二层循环嵌套方式: 
#内层循环: 负责整个数据集的一次遍历,采用分批次方式(batch)。
#外层循环: 定义遍历数据集的次数,通过参数EPOCH_NUM设置。
#====================================================
EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图tensor的格式house_features = paddle.to_tensor(x)prices = paddle.to_tensor(y)# 前向计算predicts = model(house_features)# 计算损失loss = F.square_error_cost(predicts, label=prices)avg_loss = paddle.mean(loss)if iter_id%20==0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()# 清空梯度变量,以备下一轮计算opt.clear_grad()
#==================================================== 

# 保存并测试模型
# 保存模型

# 保存模型    
# 使用paddle.save API将模型当前的参数数据 model.state_dict() 保存到文件中,
# 用于模型预测或校验的程序调用。 
# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中") 

#测试模型

#测试模型
#====================================================
def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data =  one_data.reshape([1,-1])return one_data, label
#==================================================== 
# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + min_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + min_values[-1]print("预测结果Inference result is {}, 原相应值the corresponding label is {}".format(predict.numpy(), label)) 
#==================================================== 

执行结果如下所示:

PS E:\project\python> & D:/Python39/python.exe e:/project/python/BSD_House.py
(404, 14)
[2.35922547e-04 0.00000000e+00 2.62405723e-01 0.00000000e+001.72839552e-01 5.47997713e-01 7.82698274e-01 3.48961979e-014.34782617e-02 1.14822544e-01 5.53191364e-01 1.00000000e+002.04470202e-01 3.68888885e-01]
epoch: 0, iter: 0, loss is: [1.0095187]
epoch: 0, iter: 20, loss is: [0.05577583]
epoch: 0, iter: 40, loss is: [0.10179052]
epoch: 1, iter: 0, loss is: [0.05334579]
epoch: 1, iter: 20, loss is: [0.05690664]
epoch: 1, iter: 40, loss is: [0.00672564]
epoch: 2, iter: 0, loss is: [0.07125398]
epoch: 2, iter: 20, loss is: [0.07457525]
epoch: 2, iter: 40, loss is: [0.06540678]
epoch: 3, iter: 0, loss is: [0.06383592]
epoch: 8, iter: 40, loss is: [0.02903528]
epoch: 9, iter: 0, loss is: [0.05061438]
epoch: 9, iter: 20, loss is: [0.03942648]
epoch: 9, iter: 40, loss is: [0.02119895]
模型保存成功,模型参数保存在LR_model.pdparams中
预测结果Inference result is [[18.37352]], 原相应值the corresponding label is 19.700000762939453
PS E:\project\python>

模型保存成功,模型参数保存在LR_model.pdparams中
预测结果
预测结果Inference result is [[18.37352]], 原相应值the corresponding label is 19.700000762939453


http://www.ppmy.cn/news/985031.html

相关文章

【并发编程】ThreadLocal

从名字我们就可以看到 ThreadLocal 叫做线程变量,意思是 ThreadLocal 中填充的变量属于当前线程,该变量对其他线程而言是隔离的。 ThreadLocal 为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。 static ThreadL…

JS在生产环境屏蔽console.log的方法以及意义

console.log:向web开发控制台打印一条消息,常用来在开发时调试分析。有时在开发时,需要打印一些对象信息,但发布时却忘记去掉console.log语句,这可能造成内存泄露。 在传递给console.log的对象是不能被垃圾回收 ♻️&…

C++多线程编程(第三章 案例1,使用互斥锁+ list模拟线程通信)

主线程和子线程进行list通信,要用到互斥锁,避免同时操作 1、封装线程基类XThread控制线程启动和停止; 2、模拟消息服务器线程,接收字符串消息,并模拟处理; 3、通过Unique_lock和mutex互斥方位list 消息队列…

本地编译rocketmq源码

源码下载 RocketMq下载 运行 这是rocketmq源码大致的业务分层,本地调试主要是启动nameserver和broker,其他的发送和接收的实现代码可直接使用example包中的官方例子,也可以自己编码代码实现。 启动namesrv包下的启动类,Namesrv…

通过 MongoTemplate 按ID或其他字段删除

按ID删除 mongoTemplate.remove(Query.query(Criteria.where("_id").is("documentId")), MyDocument.class);按其他字段删除 mongoTemplate.remove(Query.query(Criteria.where("fieldName").is("fieldValue")), MyDocument.class);…

如何找回删除的文件?文件恢复,3招就行!

“昨天不小心把我的毕业资料删除了,因为改了很多版,删除的时候没想到把正确的版本删除了,错误的版本还在!这种情况应该怎么办呢?怎样才能找回我删除的文件呀?” 对于一些比较重要的文件,不小心删…

argo workflows 配置归档

由于工作需要配置argo workflows归档,介绍一下大致步骤: 文章目录 1.在k8s中是找这个configmap2.编辑configmap3 配置数据库用户名和密码:4.把workflow这个pod删掉,让他重新生成一个 1.在k8s中是找这个configmap kubectl get cm -n argo2.编…

zookeeper学习(一) Standalone模式(单机模式)安装

安装准备 centos7环境jdk1.8环境zookeeper安装包 安装jdk 上传jdk安装包解压安装包到目录中 tar -zxvf jdk-8u361-linux-x64.tar.gz如果需要指定目录可以在后面加上 -C,如 tar -zxvf jdk-8u361-linux-x64.tar.gz -C 目录配置jdk环境变量 vim /etc/profile打开…