一道经典的网红面试题:从URL输入到页面展现到底发生了什么?

news/2024/11/23 15:05:15/

目录 

🏮 前言

一、URL 到底是啥

二、域名解析(DNS)

三、TCP 三次握手

四、发送 HTTP 请求

五、服务器处理请求并返回 HTTP 报文

六、浏览器解析渲染页面

1.根据 HTML 解析 DOM 树

2.根据 CSS 解析生成 CSS 规则树

3.结合 DOM 树和 CSS 规则树,生成渲染树

4.根据渲染树计算每一个节点的信息(布局)

5.根据计算好的信息绘制页面

七、断开连接

📚 参考文章


🏮 前言

打开浏览器从输入网址到网页呈现在大家面前,背后到底发生了什么?经历怎么样的一个过程?先给大家来张总体流程图,具体步骤请看下文分解!

总体来说分为以下几个过程:

  • DNS 解析:将域名解析成 IP 地址
  • TCP 连接:TCP 三次握手
  • 发送 HTTP 请求
  • 服务器处理请求并返回 HTTP 报文
  • 浏览器处理服务器的响应,即浏览器解析渲染页面
  • 断开连接:TCP 四次挥手

一、URL 到底是啥

URL(Uniform Resource Locator),统一资源定位符,用于定位互联网上资源,俗称网址。
比如, http://www.w3school.com.cn,遵守以下的语法规则:

scheme://host.domain:port/path/filename

各部分解释如下:👇

  • scheme - 定义因特网服务的类型。常见的协议有 http、https、ftp、file,其中最常见的类型是 http,而 https 则是进行加密的网络传输。
  • host - 定义域主机(http 的默认主机是 www)
  • domain - 定义因特网域名,比如 w3school.com.cn
  • port - 定义主机上的端口号(http 的默认端口号是 80)
  • path - 定义服务器上的路径(如果省略,则文档必须位于网站的根目录中)。
  • filename - 定义文档 / 资源的名称

二、域名解析(DNS)

在浏览器输入网址后,首先要经过域名解析,因为浏览器并不能直接通过域名找到对应的服务器,而是要通过 IP 地址。大家这里或许会有个疑问----计算机既可以被赋予 IP 地址,也可以被赋予主机名和域名。比如 www.hackr.jp。那怎么不一开始就赋予个 IP 地址?这样就可以省去解析麻烦。我们先来了解下什么是 IP 地址

1. IP 地址

IP 地址是指互联网协议地址,是 IP Address 的缩写。IP 地址是 IP 协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。IP 地址是一个 32 位的二进制数,比如 127.0.0.1 为本机 IP。

域名就相当于 IP 地址乔装打扮的伪装者,带着一副面具。它的作用就是便于记忆和沟通的一组服务器的地址。用户通常使用主机名或域名来访问对方的计算机,而不是直接通过 IP 地址访问。因为与 IP 地址的一组纯数字相比,用字母配合数字的表示形式来指定计算机名更符合人类的记忆习惯。但要让计算机去理解名称,相对而言就变得困难了。因为计算机更擅长处理一长串数字。为了解决上述的问题,DNS 服务应运而生。

2. 什么是域名解析

DNS 协议提供通过域名查找 IP 地址,或逆向从 IP 地址反查域名的服务。DNS 是一个网络服务器,我们的域名解析简单来说就是在 DNS 上记录一条信息记录

例如 baidu.com  220.114.23.56(服务器外网IP地址)80(服务器端口号)

3. 浏览器如何通过域名去查询 URL 对应的 IP 呢

  • 浏览器缓存:浏览器会按照一定的频率缓存 DNS 记录。
  • 操作系统缓存:如果浏览器缓存中找不到需要的 DNS 记录,那就去操作系统中找。
  • 路由缓存:路由器也有 DNS 缓存。
  • ISP 的 DNS 服务器:ISP 是互联网服务提供商(Internet Service Provider)的简称,ISP 有专门的 DNS 服务器应对 DNS 查询请求。
  • 根服务器:ISP 的 DNS 服务器还找不到的话,它就会向根服务器发出请求,进行递归查询(DNS 服务器先问根域名服务器.com 域名服务器的 IP 地址,然后再问.baidu 域名服务器,依次类推)

4. 小结 

浏览器通过向 DNS 服务器发送域名,DNS 服务器查询到与域名相对应的 IP 地址,然后返回给浏览器,浏览器再将 IP 地址打在协议上,同时请求参数也会在协议搭载,然后一并发送给对应的服务器。接下来介绍向服务器发送 HTTP 请求阶段,HTTP 请求分为三个部分:TCP 三次握手、http 请求响应信息、关闭 TCP 连接。

三、TCP 三次握手

在客户端发送数据之前会发起 TCP 三次握手用以同步客户端和服务端的序列号和确认号,并交换 TCP 窗口大小信息

1. TCP 三次握手的过程如下:

  • 客户端发送一个带 SYN=1,Seq=X 的数据包到服务器端口(第一次握手,由浏览器发起,告诉服务器我要发送请求了)
  • 服务器发回一个带 SYN=1, ACK=X+1, Seq=Y 的响应包以示传达确认信息(第二次握手,由服务器发起,告诉浏览器我准备接受了,你赶紧发送吧)
  • 客户端再回传一个带 ACK=Y+1, Seq=Z 的数据包,代表“握手结束”(第三次握手,由浏览器发送,告诉服务器,我马上就发了,准备接受吧)

2. 为啥需要三次握手

TCP 三次握手的目的是:为了防止已经失效的连接请求报文发送到服务端,服务端因而产生不必要的响应开销。 

在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。在另一部经典的《计算机网络》一书中讲“三次握手”的目的是为了解决“网络中存在延迟的重复分组”的问题。 

四、发送 HTTP 请求

TCP 三次握手结束后,开始发送 HTTP 请求报文
请求报文由请求行(request line)、请求头(header)、空行、请求体四个部分组成,如下图所示:

 
1. 请求行包含请求方法、URL、协议版本

  • 请求方法包含 8 种:GET、POST、PUT、DELETE、PATCH、HEAD、OPTIONS、TRACE。
  • URL 即请求地址,由 <协议>://<主机>:<端口>/<路径>?<参数> 组成
  • 协议版本即 http 版本号
POST  /chapter17/user.html HTTP/1.1

以上代码中“POST”代表请求方法,“/chapter17/user.html”表示 URL,“HTTP/1.1”代表协议和协议的版本。现在比较流行的是 Http1.1 版本

2. 请求头包含请求的附加信息,由关键字 / 值对组成,每行一对,关键字和值用英文冒号“:”分隔。

请求头部通知服务器有关于客户端请求的信息。它包含许多有关的客户端环境和请求正文的有用信息。其中,比如:Host,表示主机名,虚拟主机;Connection,是HTTP/1.1 增加的,使用 keepalive,即持久连接,一个连接可以发多个请求;User-Agent,请求发出者,兼容性以及定制化需求。

3. 请求体,可以承载多个请求参数的数据,包含回车符、换行符和请求数据,并不是所有请求都具有请求数据。

name=tom&password=1234&realName=tomson

上面代码,承载着 name、password、realName 三个请求参数。

五、服务器处理请求并返回 HTTP 报文

1. 服务器

服务器是网络环境中的高性能计算机,它侦听网络上的其他计算机(客户机)提交的服务请求,并提供相应的服务,比如网页服务、文件下载服务、邮件服务、视频服务。而客户端主要的功能是浏览网页、看视频、听音乐等等,两者截然不同。 每台服务器上都会安装处理请求的应用——web server。常见的 web server 产品有 apache、nginx、IIS 或 Lighttpd 等。

web server 担任管控的角色,对于不同用户发送的请求,会结合配置文件,把不同请求委托给服务器上处理相应请求的程序进行处理(例如 CGI 脚本,JSP 脚本,servlets,ASP 脚本,服务器端 JavaScript,或者一些其它的服务器端技术等),然后返回后台程序处理产生的结果作为响应。

2. MVC 后台处理阶段

后台开发现在有很多框架,但大部分都还是按照 MVC 设计模式进行搭建的。

MVC 是一个设计模式,将应用程序分成三个核心部件:模型(model)-- 视图(view)--控制器(controller),它们各自处理自己的任务,实现输入、处理和输出的分离。

1、视图(view)

它是提供给用户的操作界面,是程序的外壳。

2、模型(model)

模型主要负责数据交互。在 MVC 的三个部件中,模型拥有最多的处理任务。一个模型能为多个视图提供数据。

3、控制器(controller)

它负责根据用户从"视图层"输入的指令,选取"模型层"中的数据,然后对其进行相应的操作,产生最终结果。控制器属于管理者角色,从视图接收请求并决定调用哪个模型构件去处理请求,然后再确定用哪个视图来显示模型处理返回的数据。

这三层是紧密联系在一起的,但又是互相独立的,每一层内部的变化不影响其他层。每一层都对外提供接口(Interface),供上面一层调用。

至于这一阶段发生什么?简而言之,首先浏览器发送过来的请求先经过控制器,控制器进行逻辑处理和请求分发,接着会调用模型,这一阶段模型会获取 redis db 以及 MySQL 的数据,获取数据后将渲染好的页面,响应信息会以响应报文的形式返回给客户端,最后浏览器通过渲染引擎将网页呈现在用户面前。

3. http 响应报文

响应报文由响应行(request line)、响应头部(header)、响应主体三个部分组成。如下图所示:

(1) 响应行包含:协议版本,状态码,状态码描述

状态码规则如下:

  • 1xx:指示信息--表示请求已接收,继续处理。
  • 2xx:成功--表示请求已被成功接收、理解、接受。
  • 3xx:重定向--要完成请求必须进行更进一步的操作。
  • 4xx:客户端错误--请求有语法错误或请求无法实现。
  • 5xx:服务器端错误--服务器未能实现合法的请求。

(2) 响应头部包含响应报文的附加信息,由 名/值 对组成

(3) 响应主体包含回车符、换行符和响应返回数据,并不是所有响应报文都有响应数据

六、浏览器解析渲染页面

浏览器拿到响应文本 HTML 后,接下来介绍下浏览器渲染机制


浏览器解析渲染页面分为一下五个步骤:

  • 根据 HTML 解析出 DOM 树
  • 根据 CSS 解析生成 CSS 规则树
  • 结合 DOM 树和 CSS 规则树,生成渲染树
  • 根据渲染树计算每一个节点的信息
  • 根据计算好的信息绘制页面

1.根据 HTML 解析 DOM 树

  • 根据 HTML 的内容,将标签按照结构解析成为 DOM 树,DOM 树解析的过程是一个深度优先遍历。即先构建当前节点的所有子节点,再构建下一个兄弟节点。
  • 在读取 HTML 文档,构建 DOM 树的过程中,若遇到 script 标签,则 DOM 树的构建会暂停,直至脚本执行完毕。

2.根据 CSS 解析生成 CSS 规则树

  • 解析 CSS 规则树时 js 执行将暂停,直至 CSS 规则树就绪。
  • 浏览器在 CSS 规则树生成之前不会进行渲染。

3.结合 DOM 树和 CSS 规则树,生成渲染树

  • DOM 树和 CSS 规则树全部准备好了以后,浏览器才会开始构建渲染树。
  • 精简 CSS 并可以加快 CSS 规则树的构建,从而加快页面相应速度。

4.根据渲染树计算每一个节点的信息(布局)

  • 布局:通过渲染树中渲染对象的信息,计算出每一个渲染对象的位置和尺寸
  • 回流:在布局完成后,发现了某个部分发生了变化影响了布局,那就需要倒回去重新渲染。

5.根据计算好的信息绘制页面

  • 绘制阶段,系统会遍历呈现树,并调用呈现器的“paint”方法,将呈现器的内容显示在屏幕上。
  • 重绘:某个元素的背景颜色,文字颜色等,不影响元素周围或内部布局的属性,将只会引起浏览器的重绘。
  • 回流:某个元素的尺寸发生了变化(影响了布局),则需重新计算渲染树,重新渲染。

七、断开连接

当数据传送完毕,需要断开 tcp 连接,此时发起 tcp 四次挥手

  • 发起方向被动方发送报文,Fin、Ack、Seq,表示已经没有数据传输了。并进入 FIN_WAIT_1 状态。(第一次挥手:由浏览器发起的,发送给服务器,我请求报文发送完了,你准备关闭吧)
  • 被动方发送报文,Ack、Seq,表示同意关闭请求。此时主机发起方进入 FIN_WAIT_2 状态。(第二次挥手:由服务器发起的,告诉浏览器,我请求报文接受完了,我准备关闭了,你也准备吧)
  • 被动方向发起方发送报文段,Fin、Ack、Seq,请求关闭连接。并进入 LAST_ACK 状态。(第三次挥手:由服务器发起,告诉浏览器,我响应报文发送完了,你准备关闭吧)
  • 发起方向被动方发送报文段,Ack、Seq。然后进入等待 TIME_WAIT 状态。被动方收到发起方的报文段以后关闭连接。发起方等待一定时间未收到回复,则正常关闭。(第四次挥手:由浏览器发起,告诉服务器,我响应报文接受完了,我准备关闭了,你也准备吧)

TCP 四次挥手的目的是:为确保收发双方数据传输的完整性

那四次分手又是为何呢?TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。💌 资料来源:https://www.bilibili.com/read/cv9734879/

给大家推荐一个好用的BUG监控工具Fundebug,欢迎免费试用!

📚 参考文章

  • 从输入页面地址到展示页面信息都发生了些什么?
  • 前端经典面试题: 从输入 URL 到页面加载发生了什么?
  • TCP 的三次握手四次挥手
  • 访问 Web,tcp 传输全过程(三次握手、请求、数据传输、四次挥手)
  • 浏览器发送 http 请求过程分析
  • 谢希仁著《计算机网络》第四版
  • 图解 http

http://www.ppmy.cn/news/97546.html

相关文章

第三期:那些年,我们一起经历过的链表中的浪漫

PS&#xff1a;每道题解题方法不唯一&#xff0c;欢迎讨论&#xff01;每道题后都有解析帮助你分析做题&#xff0c;答案在最下面&#xff0c;关注博主每天持续更新。 1. 两个链表的第一个公共节点 “我走过我的世界&#xff0c;再从你的世界走一遍” “你走过你的世界&#x…

redis未授权访问漏洞

1、什么是redis未授权访问漏洞 Redis安装后&#xff0c;如果绑定在 0.0.0.0:6379&#xff0c;并且没有进行采用相关的策略&#xff0c;比如添加防火墙规则避免其他非信任来源 ip 访问等&#xff0c;这样将会将 Redis 服务暴露到公网上&#xff0c;如果在没有设置密码认证或使用…

JetBrains的C和C++集成开发环境CLion 2023版本在Linux系统的下载与安装配置教程

目录 前言一、CLion安装二、使用配置总结 前言 CLion是一款为C和C语言开发人员设计的集成开发环境&#xff08;IDE&#xff09;。它提供了丰富的功能和工具&#xff0c;可以帮助开发人员更高效地编写、调试和部署C和C应用程序。注&#xff1a;已在CentOS7.9和Ubuntu20.04安装测…

flutter_学习记录_02底部 Tab 切换保持页面状态的几种方法

一、IndexedStack 保持页面状态 1.1 IndexedStack原理说明 IndexedStack 和 Stack 一样&#xff0c;都是层布局控件&#xff0c; 可以在一个控件上面放置另一 个控件&#xff0c;但唯一不同的是 IndexedStack 在同一时刻只能显示子控件中的一个控 件&#xff0c;通过 Index 属…

Rk1126 实现 yolov5 6.2 推理

基于 RK1126 实现 yolov5 6.2 推理. 转换 ONNX python export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 --include onnx --simplify 安装 rk 环境 安装部分参考网上, 有很多. 参考: https://github.com/rockchip-linux/rknpu 转换 RK模型 并验证 yolov562_t…

手摸手教你用AI生成PPT(本文不卖课)

今天再和大家分享一个AI实践&#xff1a; 如何借力AI帮我制作PPT&#xff1f; 上篇和大家安利了目前不用魔法上网&#xff0c;且不用翻墙的最强AI工具&#xff0c;假设我今天要给大家做一个分享&#xff0c;来介绍Claude&#xff0c;如何搞定PPT呢&#xff1f; 当然是直接问Cla…

传统机器学习(七)支持向量机(1)超平面、SVM硬间隔、软间隔模型和损失函数

传统机器学习(七)支持向量机(1) 1 算法概述 1.1 超平面的理解 1.1.1 超平面公式 我们对“平面”概念的理解&#xff0c;一般是定义在三维空间中的&#xff0c;如下&#xff1a; 假设M和M0为平面上的两点&#xff0c;n为该平面的法向量&#xff0c;那么&#xff0c;通过下图…

MySQL存储引擎对比总结

文章目录 一、存储引擎是什么二、存储引擎有哪些三、常用存储引擎介绍1、InnoDB2、MyISAM3、MEMORY4、MRG_MYISAM &#xff08;MERGE&#xff09;5、ARCHIVE6、BLACKHOLE7、FEDERATED8、CSV9、PERFORMANCE_SCHEMA10、NDB 一、存储引擎是什么 存储引擎是数据库的核心&#xff0…