Hi
The general problem here is how to create conversational applications based on GPT3 able to accomplish task-oriented deterministic activities, overtaking the ‘partially-no-deterministic’ elaborations of generative systems.
Hi这里的一般问题是如何创建基于 GPT3 的对话应用程序,能够完成面向任务的确定性活动,超越生成系统的“部分无确定性”阐述。
In practice, you want to call any custom function (API acting as info retrieval or a disposable action) modifying the LLM completions letting the LLM to call that function as needed.
实际上,您希望调用任何自定义函数(充当信息检索或一次性操作的 API),修改 LLM 完成,让 LLM 根据需要调用该函数。
Practical examples? Consider a chatbot that help customers with usual informative answers but that allow to open a ticket on some help-desk system. Or consider a question/answering system that do need to retrieve some info in realtime, etc.
实例?考虑一个聊天机器人,它帮助客户提供通常的信息答案,但允许在某些帮助台系统上打开票证。或者考虑一个确实需要实时检索一些信息的问答系统,等等。
Let’s