ChatGPT必读论文、博客和API工具(含中文指南)

news/2025/2/2 6:48:34/

ChatGPT官网地址

pro版地址

awesome-chatgpt-prompts

ChatGPT中文指南

必读论文

  1. 【GPT-1】Improving Language Understanding by Generative Pre-Training.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever [pdf] 2018.6

  1. 【GPT-2】Language Models are Unsupervised Multitask Learners.

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, Ilya Sutskeve [pdf] 2019.2

  1. 【GPT-3】Language Models are Few-Shot Learners.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei [pdf] 2020.5

  1. 【InstructGPT】Training language models to follow instructions with human feedback.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe[pdf] 2022.3

  1. 【RLHF】Augmenting Reinforcement Learning with Human Feedback.

W. Bradley Knox, Peter Stone [pdf] 2011.7

  1. 【PPO】Proximal Policy Optimization Algorithms.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov [pdf] 2017.7

  1. 【LaMda】 LaMDA: Language Models for Dialog Applications.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, Quoc Le [pdf] 2022.1

  1. 【Sparrow】 Improving alignment of dialogue agents via targeted human judgements.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, Geoffrey Irving [pdf] 2022.9

  1. Fine-tuning language models from human preferences.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving [pdf][code] 2019.9

  1. Learning to summarize from human feedback.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, Paul Christiano [pdf] [code] 2020.9

  1. Cross-task generalization via natural language crowdsourcing instructions.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Hannaneh Hajishirzi [pdf] 2021.4

  1. Finetuned language models are zero-shot learners

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le [pdf] 2021.9

  1. Multitask Prompted Training Enables Zero-Shot Task Generalization.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, Alexander M. Rush [pdf] 2021.10

  1. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, Daniel Khashabi [pdf]2022.4

  1. Putting Humans in the Natural Language Processing Loop: A Survey.

Zijie J. Wang, Dongjin Choi, Shenyu Xu, Diyi Yang [pdf] 2021.4

  1. Scaling Instruction-Finetuned Language Models.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei [pdf] 2022.10

  1. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, Pascale Fung [pdf] 2023.2

  1. Is ChatGPT a General-Purpose Natural Language Processing Task Solver?

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, Diyi Yang [pdf] 2023.2

BLOGS

  • ChatGPT Official Blog

  • ChatGPTPro

  • English version of ChatGPT prompting guide ⭐⭐⭐⭐⭐

  • Chinese version of ChatGPT prompting guide

APIS

  • 【Non-Official】【Python】 acheong08/ChatGPT

  • 【Non-Official】【Python】 rawandahmad698/PyChatGPT

  • 【Non-Official】【JS/TS】 transitive-bullshit/chatgpt-api

  • 【Non-Official】【Dart】 MisterJimson/chatgpt_api_dart


http://www.ppmy.cn/news/960561.html

相关文章

京东API详情接口调用示例

以下是行业内了解到的一些情况,本帖只展示部分代码,需要更多API调试请移步注册API账号登录 - 跨境电商平台接口提供商 数据采集公司 数据接口定制服务 企业级数据服务商 { "item": { "num_iid": "10048224928552&…

礼品代发云仓API接口,云仓批量同步接口文档

项目场景: 礼品代发云仓API接口主要应用在店铺回馈老用户粉丝的一些礼品,通过礼品代发API接口可批量下单,批量同步店铺后台。 注意事项: 1.获取礼品代发API接口需要每隔一小时同步一次发货仓和礼品(以防万一 这个是最好…

京东线报-京东实时线报-高级京东线报接口

共京荣开放平台 http://interface.mkstone.club/#/ 主要淘宝线报,有凑单、作业图、购买指引、晚安问候等。 配有少量京东、拼多多线报。 9点-10点,大量淘宝线报,23点到00点 大量淘宝线报,00点后大量京东线报。 完全线报血统&a…

京东app商品详情源数据接口(item_get-获得JD商品详情)

通过API接口采集京东商品列表和商品详情遇到滑块验证码的解决方法(带SKU和商品描述,可高并发),主要是解决了高频情况下的阿里系滑块和必须要N多小号才能解决的反扒问题,以后都可以使用本方法: 大家都知道&a…

京东详情api

简要描述 根据商品id获取详情数据 请求URL http://xxx.xxx.xxx.xxx:xxxx/jd.get.item 请求方式 get 请求Query参数 参数名示例值必选类型说明itemid100016034386是string商品idtokenadmin.api是string权限token 成功返回示例 复制部分数据展示: {"dat…

京东API接口:item_get - 获得JD商品详情

今天分享的是京东平台API,商品详情接口。 京东获得JD商品详情 API 返回值说明 点击注册测试地址(获取Key和secret) Request address: //api.onebound.cn/jd/api_call.php? num_iid10335871600&api_nameitem_get&langzh-CN&k…

【京东JD电商平台api接口】获得JD商品详情接口PHP调用演示示例

京东提供了商品详情API接口,可以帮助开发者获取到指定商品的详细信息,例如价格、库存、销售量、详情描述、图片等。具体获取方式如下: 1. 首先需要在开放平台上申请API接口密钥。 2. 登录API接口调用地址。 3. 根据API接口文档中的参数要求&a…

京东API接口详情

API英文全称为:Application Programming Interface,中文意思是应用程序编程接口,它是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力。 点击试用 响应示例 { "item": {…