以下是使用TensorRT API将多个engine文件合并为一个engine文件的代码示例:
import tensorrt as trt
import numpy as np# create a TensorRT logger
logger = trt.Logger(trt.Logger.WARNING)# specify the names of the input and output bindings
input_names = ['input_0']
output_names = ['output_0']# create a builder
builder = trt.Builder(logger)# set the maximum batch size and workspace size
max_batch_size = 1
max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = max_batch_size
builder.max_workspace_size = max_workspace_size# create an optimizer profile with dynamic shapes support
min_input_shape = {"input_0": (1, 3, 224, 224)}
max_input_shape = {"input_0": (max_batch_size, 3, 224, 224)}
opt_profile = builder.create_optimization_profile()
opt_profile.set_shape(input_names[0], min_input_shape[input_names[0]], max_input_shape[input_names[0]], max_input_shape)# load the engine files
engine_files = ['engine_file_0.trt', 'engine_file_1.trt', 'engine_file_2.trt']# create a list of engines
engines = []
for engine_file in engine_files:# deserialize the engine from filewith open(engine_file, 'rb') as f:engine_data = f.read()engine = builder.deserialize_cuda_engine(engine_data)engines.append(engine)# create a new engine with all bindings from all engines
all_bindings = {}
for engine in engines:num_bindings = engine.num_bindingsfor i in range(num_bindings):binding_name = engine.get_binding_name(i)if engine.binding_is_input(i):shape = engine.get_binding_shape(i)dtype = engine.get_binding_dtype(i)all_bindings[binding_name] = trt.Tensor(dtype, max_input_shape[binding_name])opt_profile.set_shape(binding_name, min_input_shape[binding_name], max_input_shape[binding_name], max_input_shape)else:all_bindings[binding_name] = np.empty(engine.get_binding_shape(i), dtype=engine.get_binding_dtype(i))# create a new engine
new_engine = builder.build_engine(network=engines[0].get_network(), config=builder.create_builder_config(), profiles=[opt_profile])# create execution contexts for all engines
contexts = []
for engine in engines:context = engine.create_execution_context()contexts.append(context)new_context = new_engine.create_execution_context()# allocate memory for all bindings
bindings = []
for binding_name in all_bindings.keys():if binding_name in input_names:bindings.append(new_context.get_binding_handle(binding_name))else:for context in contexts:bindings.append(context.get_binding_handle(binding_name))# copy data from all engines to the new engine
for i in range(max_batch_size):offset = i * np.prod(max_input_shape[input_names[0]])for binding_name, buffer in all_bindings.items():if binding_name in input_names:# copy input data to new contextdata = np.random.randn(*max_input_shape[binding_name]).astype(all_bindings[binding_name].dtype)np.copyto(buffer, data.reshape(-1), casting='no')bindings[i][offset:offset+data.size] = bufferelse:# copy output data from old contexts to new contextcontext_index = (i // engine.max_batch_size)context_offset = (i % engine.max_batch_size) * np.prod(engine.get_binding_shape(i))buffer_size = np.prod(engine.get_binding_shape(i)) * engine.max_batch_sizecontext_bindings = contexts[context_index].get_binding_handle(binding_name)bindings[i][offset:offset+buffer_size] = context_bindings[context_offset:context_offset+buffer_size]# execute the new engine and verify the output
new_context.execute_v2(bindings=bindings)
output_data = bindings[output_names[0]][0]
expected_output_data = np.zeros_like(output_data)
for context in contexts:context.execute_v2(bindings=bindings[len(input_names):len(all_bindings.keys())])expected_output_data += bindings[output_names[0]][0]
np.testing.assert_allclose(output_data, expected_output_data, rtol=1e-5, atol=1e-8)
这个代码假设您已经将多个引擎文件序列化成二进制格式,并将它们保存在名为engine_file_0.trt,engine_file_1.trt等文件中。它会将所有引擎文件加载到一个列表中,然后根据所有引擎的绑定创建一个新引擎,并将所有数据从旧引擎复制到新引擎。最后,它会执行新引擎并验证输出。此代码旨在展示如何合并多个引擎文件,并可能需要根据您的具体情况进行修改。
您可以使用TensorRT的IHostMemory
和IRuntime
接口来将多个engine合并成一个engine。以下是合并两个engine的示例代码:
// Load the first engine
std::ifstream firstEngineFile("firstEngine.trt", std::ios::in | std::ios::binary);
firstEngineFile.seekg(0, std::ios::end);
const size_t firstEngineSize = firstEngineFile.tellg();
firstEngineFile.seekg(0, std::ios::beg);
std::vector<char> firstEngineData(firstEngineSize);
firstEngineFile.read(firstEngineData.data(), firstEngineSize);
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger);
nvinfer1::ICudaEngine* firstEngine = runtime->deserializeCudaEngine(firstEngineData.data(), firstEngineSize);// Load the second engine
std::ifstream secondEngineFile("secondEngine.trt", std::ios::in | std::ios::binary);
secondEngineFile.seekg(0, std::ios::end);
const size_t secondEngineSize = secondEngineFile.tellg();
secondEngineFile.seekg(0, std::ios::beg);
std::vector<char> secondEngineData(secondEngineSize);
secondEngineFile.read(secondEngineData.data(), secondEngineSize);
nvinfer1::ICudaEngine* secondEngine = runtime->deserializeCudaEngine(secondEngineData.data(), secondEngineSize);// Create a builder for the merged engine
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
nvinfer1::INetworkDefinition* network = builder->createNetwork();// Merge the engines by copying all layers and weights from both engines to the new network
for (int i = 0; i < firstEngine->getNbBindings(); i++)
{const char* name = firstEngine->getBindingName(i);nvinfer1::ITensor* tensor = network->addInput(name, firstEngine->getBindingDataType(i), firstEngine->getBindingDimensions(i))->getOutput(0);tensor->setDynamicRange(-127.f, 127.f);tensor->setAllowedFormats(nvinfer1::TensorFormat::kLINEAR);
}for (int i = 0; i < firstEngine->getNbLayers(); i++)
{const nvinfer1::ILayer* layer = firstEngine->getLayer(i);nvinfer1::ITensor* input = layer->getInput(0);nvinfer1::ITensor* output = layer->getOutput(0);nvinfer1::ILayer* newLayer = network->addLayer(*layer);newLayer->setInput(0, input);newLayer->setOutput(0, output);
}for (int i = 0; i < secondEngine->getNbLayers(); i++)
{const nvinfer1::ILayer* layer = secondEngine->getLayer(i);nvinfer1::ITensor* input = layer->getInput(0);nvinfer1::ITensor* output = layer->getOutput(0);nvinfer1::ILayer* newLayer = network->addLayer(*layer);newLayer->setInput(0, input);newLayer->setOutput(0, output);
}for (int i = 0; i < secondEngine->getNbBindings(); i++)
{const char* name = secondEngine->getBindingName(i);const int bindingIndex = secondEngine->getBindingIndex(name);nvinfer1::ITensor* tensor = network->addInput(name, secondEngine->getBindingDataType(bindingIndex), secondEngine->getBindingDimensions(bindingIndex))->getOutput(0);tensor->setDynamicRange(-127.f, 127.f);tensor->setAllowedFormats(nvinfer1::TensorFormat::kLINEAR);
}// Build the merged engine
nvinfer1::ICudaEngine* mergedEngine = builder->buildCudaEngine(*network);
nvinfer1::IHostMemory* mergedEngineMemory = mergedEngine->serialize();// Save the merged engine to disk
std::ofstream mergedEngineFile("mergedEngine.trt", std::ios::out | std::ios::binary);
mergedEngineFile.write(reinterpret_cast<const char*>(mergedEngineMemory->data()), mergedEngineMemory->size());// Cleanup
mergedEngineMemory->destroy();
builder->destroy();
network->destroy();
firstEngine->destroy();
secondEngine->destroy();
runtime->destroy();
这个例子假设第一个engine有多个输入绑定和一个输出绑定,第二个engine有一个输入绑定和多个输出绑定。代码会创建一个新的engine,该engine从两个输入绑定开始,然后遍历两个engine的所有层,将它们复制到新的engine中,最后以两个输出绑定结束。最终的mergedEngine.trt文件将包含两个engine的所有内容。
要将两个TensorRT构建的engine文件与一个插件生成的engine文件合并为一个engine文件,需要按照以下步骤进行:
- 加载两个TensorRT构建的engine文件,使用
nvinfer1::IRuntime
接口的deserializeCudaEngine
函数进行加载,得到两个nvinfer1::ICudaEngine
实例。
// 加载第一个engine文件
std::ifstream engineFile1(engineFilePath1, std::ios::binary);
if (!engineFile1) {std::cerr << "Error opening engine file: " << engineFilePath1 << std::endl;// handle error
}
engineFile1.seekg(0, std::ifstream::end);
const size_t engineSize1 = engineFile1.tellg();
engineFile1.seekg(0, std::ifstream::beg);
std::unique_ptr<char[]> engineData1(new char[engineSize1]);
engineFile1.read(engineData1.get(), engineSize1);
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger);
nvinfer1::ICudaEngine* engine1 = runtime->deserializeCudaEngine(engineData1.get(), engineSize1, nullptr);// 加载第二个engine文件
std::ifstream engineFile2(engineFilePath2, std::ios::binary);
if (!engineFile2) {std::cerr << "Error opening engine file: " << engineFilePath2 << std::endl;// handle error
}
engineFile2.seekg(0, std::ifstream::end);
const size_t engineSize2 = engineFile2.tellg();
engineFile2.seekg(0, std::ifstream::beg);
std::unique_ptr<char[]> engineData2(new char[engineSize2]);
engineFile2.read(engineData2.get(), engineSize2);
nvinfer1::ICudaEngine* engine2 = runtime->deserializeCudaEngine(engineData2.get(), engineSize2, nullptr);
- 加载插件生成的engine文件,同样使用
deserializeCudaEngine
函数进行加载,得到一个nvinfer1::ICudaEngine
实例。
// 加载插件生成的engine文件
std::ifstream engineFile3(engineFilePath3, std::ios::binary);
if (!engineFile3) {std::cerr << "Error opening engine file: " << engineFilePath3 << std::endl;// handle error
}
engineFile3.seekg(0, std::ifstream::end);
const size_t engineSize3 = engineFile3.tellg();
engineFile3.seekg(0, std::ifstream::beg);
std::unique_ptr<char[]> engineData3(new char[engineSize3]);
engineFile3.read(engineData3.get(), engineSize3);
nvinfer1::ICudaEngine* engine3 = runtime->deserializeCudaEngine(engineData3.get(), engineSize3, nullptr);
- 创建一个新的
nvinfer1::IBuilder
实例,用于合并三个engine文件。
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);
nvinfer1::INetworkDefinition* network = builder->createNetwork();
- 将第一个engine的所有层添加到新的network中。
for (int i = 0; i < engine1->getNbBindings(); ++i) {auto bindingName = engine1->getBindingName(i);auto bindingIndex = engine1->getBindingIndex(bindingName);auto bindingSize = engine1->getBindingDimensions(bindingIndex);auto bindingType = engine1->getBindingDataType(bindingIndex);auto bindingRole = engine1->getBindingInputOrOutput(i);if (bindingRole == nvinfer1::TensorFormat::kLINEAR) {network->addInput(bindingName, bindingType, bindingSize);} else {network->markOutput(*engine1->getBindingName(i));}nvinfer1::ITensor* inputTensor = network->getInput(i);nvinfer1::ITensor* outputTensor = engine1->getBindingIndex(bindingName) < engine1->getNbBindings() - 1 ?engine1->getBindingTensor(bindingName) : nullptr;if (outputTensor) {nvinfer1::ILayer* layer = network->addIdentity(*(outputTensor));layer->setName(bindingName);layer->setOutputName(0, bindingName);inputTensor->setName(bindingName);inputTensor->setType(inputType);network->markOutput(*inputTensor);}bindings[i] = nullptr;if (engine1->bindingIsInput(i)) {bindings[i] = network->addInput(bindingName, bindingType, bindingSize);} else {bindings[i] = network->addConstant(bindingSize, engine1->getBindingData(bindingIndex));}engine1_input_indexes.emplace_back(i);
}
- 将第二个engine的所有层添加到新的network中。
for (int i = 0; i < engine2->getNbBindings(); ++i) {auto bindingName = engine2->getBindingName(i);auto bindingIndex = engine2->getBindingIndex(bindingName);auto bindingSize = engine2->getBindingDimensions(bindingIndex);auto bindingType = engine2->getBindingDataType(bindingIndex);auto bindingRole = engine2->getBindingInputOrOutput(i);if (bindingRole == nvinfer1::TensorFormat::kLINEAR) {if (engine1_input_indexes.empty() && engine2_input_indexes.empty()) {network->addInput(bindingName, bindingType, bindingSize);} else {input_type = bindingType;input_dims = bindingSize;nvinfer1::ITensor* inputTensor = network->addInput(bindingName, bindingType, bindingSize);auto index = engine2->getBindingIndex(bindingName);auto tensor = engine2->getBindingTensor(bindingName);assert(tensor != nullptr && "Failed to locate tensor in engine");inputTensor->setDynamicRange(-1.f, 1.f);bindings[index] = inputTensor;input_tensor = inputTensor;}} else {network->markOutput(*engine2->getBindingName(i));}nvinfer1::ITensor* inputTensor = input_tensor;nvinfer1::ITensor* outputTensor = engine2->getBindingIndex(bindingName) < engine2->getNbBindings() - 1 ?engine2->getBindingTensor(bindingName) : nullptr;if (outputTensor) {nvinfer1::ILayer* layer = network->addIdentity(*(outputTensor));layer->setName(bindingName);layer->setOutputName(0, bindingName);inputTensor->setName(bindingName);inputTensor->setType(inputType);network->markOutput(*inputTensor);}bindings[i] = nullptr;if (engine2->bindingIsInput(i)) {bindings[i] = network->addInput(bindingName, bindingType, bindingSize);} else {bindings[i] = network->addConstant(bindingSize, engine2->getBindingData(bindingIndex));}engine2_input_indexes.emplace_back(i);
}
- 将插件生成的engine的所有层添加到新的network中。
for (int i = 0; i < engine3->getNbBindings(); ++i) {auto bindingName = engine3->getBindingName(i);auto bindingIndex = engine3->getBindingIndex(bindingName);auto bindingSize = engine3->getBindingDimensions(bindingIndex);auto bindingType = engine3->getBindingDataType(bindingIndex);auto bindingRole = engine3->getBindingInputOrOutput(i);if (bindingRole == nvinfer1::TensorFormat::kLINEAR) {if (engine1_input_indexes.empty() && engine2_input_indexes.empty() && engine3_input_indexes.empty()) {network->addInput(bindingName, bindingType, bindingSize);} else {input_type = bindingType;input_dims = bindingSize;nvinfer1::ITensor* inputTensor = network->addInput(bindingName, bindingType, bindingSize);auto index = engine3->getBindingIndex(bindingName);auto tensor = engine3->getBindingTensor(bindingName);assert(tensor != nullptr && "Failed to locate tensor in engine");inputTensor->setDynamicRange(-1.f, 1.f);bindings[index] = inputTensor;input_tensor = inputTensor;}} else {network->markOutput(*engine3->getBindingName(i));}nvinfer1::ITensor* inputTensor = input_tensor;nvinfer1::ITensor* outputTensor = engine3->getBindingIndex(bindingName) < engine3->getNbBindings() - 1 ?engine3->getBindingTensor(bindingName) : nullptr;if (outputTensor) {nvinfer1::ILayer* layer = network->addIdentity(*(outputTensor));layer->setName(bindingName);layer->setOutputName(0, bindingName);inputTensor->setName(bindingName);inputTensor->setType(inputType);network->markOutput(*inputTensor);}bindings[i] = nullptr;if (engine3->bindingIsInput(i)) {bindings[i] = network->addInput(bindingName, bindingType, bindingSize);} else {bindings[i] = network->addConstant(bindingSize, engine3->getBindingData(bindingIndex));}engine3_input_indexes.emplace_back(i);
}
- 将新的
nvinfer1::INetworkDefinition
对象和设备类型传递给nvinfer1::IBuilder
对象,使用buildCudaEngine
函数生成合并后的engine文件。
std::string mode = "fp32";
builder->setMaxBatchSize(batchSize);
builder->setMaxWorkspaceSize(1 << 30);
builder->setFp16Mode(mode == "fp16");
builder->setInt8Mode(mode == "int8");nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network);
- 将合并后的
nvinfer1::ICudaEngine
对象序列化到文件中,得到最终的engine文件。
if (engine) {nvinfer1::IHostMemory* serialized = engine->serialize();std::ofstream engineFile(engineFilePath, std::ios::binary);if (!engineFile) {std::cerr << "Error opening engine file: " << engineFilePath << std::endl;// handle error}engineFile.write(reinterpret_cast<const char*>(serialized->data()), serialized->size());serialized->destroy();
}
完整代码示例:
#include <iostream>
#include <fstream>
#include <memory>
#include <vector>#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "NvInferRuntimeCommon.h"class Logger : public nvinfer1::ILogger {
public:void log(nvinfer1::ILogger::Severity severity, const char* msg) override {if (severity != Severity::kINFO) {std::cout << msg << std::endl;}}
} gLogger;int main() {const std::string engineFilePath1 = "/path/to/first/engine";const std::string engineFilePath2 = "/path/to/second/engine";const std::string engineFilePath3 = "/path/to/third/engine";const std::string engineFilePath = "/path/to/merged/engine";const int batchSize = 1;nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);nvinfer1::INetworkDefinition* network = builder->createNetwork();std::vector<void*> bindings(3 * batchSize);// 加载第一个engine文件std::ifstream engineFile1(engineFilePath1, std::ios::binary);if (!engineFile1) {std::cerr << "Error opening engine file: " << engineFilePath1 << std::endl;return 1;}engineFile1.seekg(0, std::ifstream::end);const size_t engineSize1 = engineFile1.tellg();engineFile1.seekg(0, std::ifstream::beg);std::unique_ptr<char[]> engineData1(new char[engineSize1]);engineFile1.read(engineData1.get(), engineSize1);nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger);nvinfer1::ICudaEngine* engine1 = runtime->deserializeCudaEngine(engineData1.get(), engineSize1, nullptr);std::vector<int> engine1_input_indexes;// 加载第二个engine文件std::ifstream engineFile2(engineFilePath2, std::ios::binary);if (!engineFile2) {std::cerr << "Error opening engine file: " << engineFilePath2 << std::endl;return 1;}engineFile2.seekg(0, std::ifstream::end);const size_t engineSize2 = engineFile2.tellg();engineFile2.seekg(0, std::ifstream::beg);std::unique_ptr<char[]> engineData2(new char[engineSize2]);engineFile2.read(engineData2.get(), engineSize2);nvinfer1::ICudaEngine* engine2 = runtime->deserializeCudaEngine(engineData2.get(), engineSize2, nullptr);std::vector<int> engine2_input_indexes;// 加载插件生成的engine文件std::ifstream engineFile3(engineFilePath3, std::ios::binary);if (!engineFile3) {std::cerr << "Error opening engine file: " << engineFilePath3 << std::endl;return 1;}engineFile3.seekg(0, std::ifstream::end);const size_t engineSize3 = engineFile3.tellg();engineFile3.seekg(0, std::ifstream::beg);std::unique_ptr<char[]> engineData3(new char[engineSize3]);engineFile3.read(engineData3.get(), engineSize3);nvinfer1::ICudaEngine* engine3 = runtime->deserializeCudaEngine(engineData3.get(), engineSize3, nullptr);std::vector<int> engine3_input_indexes;// 将第一个engine的所有层添加到新的network中for (int i = 0; i < engine1->getNbBindings(); ++i) {auto bindingName = engine1->getBindingName(i);auto bindingIndex = engine1->getBindingIndex(bindingName);auto bindingSize = engine1->getBindingDimensions(bindingIndex);auto bindingType = engine1->getBindingDataType(bindingIndex);auto bindingRole = engine1->getBindingInputOrOutput(i);if (bindingRole == nvinfer1::TensorFormat::kLINEAR) {network->addInput(bindingName, bindingType, bindingSize);} else {network->markOutput(*engine1->getBindingName(i));}nvinfer1::ITensor* inputTensor = network->getInput(i);nvinfer1::ITensor* outputTensor = engine1->getBindingIndex(bindingName) < engine1->getNbBindings() - 1 ?engine1->getBindingTensor(bindingName) : nullptr;if (outputTensor) {nvinfer1::ILayer* layer = network->addIdentity(*(outputTensor));layer->setName(bindingName);layer->setOutputName(0, bindingName);inputTensor->setName(bindingName);inputTensor->setType(inputType);network->markOutput(*inputTensor);}bindings[i] = nullptr;if (engine1->bindingIsInput(i)) {bindings[i] = network->addInput(bindingName, bindingType, bindingSize);} else {bindings[i] = network->addConstant(bindingSize, engine1->getBindingData(bindingIndex));}engine1_input_indexes.emplace_back(i);}// 将第二个engine的所有
可以通过以下步骤将两个tensorrt构建的engine文件与一个plugin生成的engine文件合并为一个engine文件:
-
使用TensorRT API加载两个engine文件和一个带有自定义plugin代码的插件库,创建两个Execution contexts。
-
使用TensorRT API获取两个engine文件的输入和输出张量名称,并创建一个新的engine文件。
-
使用TensorRT API将第一个engine文件的输入和输出张量添加到新的engine文件中。
-
使用TensorRT API将第二个engine文件的输入和输出张量添加到新的engine文件中。
-
使用TensorRT API将自定义插件代码添加到新的engine文件中。
-
使用TensorRT API编译并序列化新的engine文件。
以下是代码示例:
#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "NvPlugin.h"using namespace nvinfer1;int main() {// Load the first engine fileIRuntime* runtime1 = createInferRuntime(gLogger);std::ifstream file1("engine1.engine", std::ios::binary);file1.seekg(0, std::ios::end);const int modelSize1 = file1.tellg();file1.seekg(0, std::ios::beg);std::unique_ptr<char[]> modelData1(new char[modelSize1]);file1.read(modelData1.get(), modelSize1);file1.close();ICudaEngine* engine1 = runtime1->deserializeCudaEngine(modelData1.get(), modelSize1, nullptr);// Load the second engine fileIRuntime* runtime2 = createInferRuntime(gLogger);std::ifstream file2("engine2.engine", std::ios::binary);file2.seekg(0, std::ios::end);const int modelSize2 = file2.tellg();file2.seekg(0, std::ios::beg);std::unique_ptr<char[]> modelData2(new char[modelSize2]);file2.read(modelData2.get(), modelSize2);file2.close();ICudaEngine* engine2 = runtime2->deserializeCudaEngine(modelData2.get(), modelSize2, nullptr);// Create a new engine with the inputs and outputs from both enginesIBuilder* builder = createInferBuilder(gLogger);INetworkDefinition* network = builder->createNetwork();// Add the inputs and outputs from the first engine to the new enginefor (int i = 0; i < engine1->getNbBindings(); i++) {std::string name = engine1->getBindingName(i);Dims dims = engine1->getBindingDimensions(i);DataType type = engine1->getBindingDataType(i);bool isInput = engine1->bindingIsInput(i);if (isInput) {network->addInput(name.c_str(), type, dims);} else {network->addOutput(name.c_str(), type, dims);}}// Add the inputs and outputs from the second engine to the new enginefor (int i = 0; i < engine2->getNbBindings(); i++) {std::string name = engine2->getBindingName(i);Dims dims = engine2->getBindingDimensions(i);DataType type = engine2->getBindingDataType(i);bool isInput = engine2->bindingIsInput(i);if (isInput) {network->addInput(name.c_str(), type, dims);} else {network->addOutput(name.c_str(), type, dims);}}// Add the custom plugin to the new enginePluginFactory pluginFactory;ITensor* inputTensor = network->getInput(0);ITensor* outputTensor = network->getOutput(0);IPluginV2Layer* customLayer = pluginFactory.createPlugin("customPlugin", inputTensor, outputTensor, 1);network->addPluginV2(&inputTensor, 1, customLayer);// Build and serialize the new enginebuilder->setMaxBatchSize(maxBatchSize);builder->setMaxWorkspaceSize(maxWorkspaceSize);ICudaEngine* newEngine = builder->buildCudaEngine(*network);IHostMemory* serializedEngine = newEngine->serialize();std::ofstream file("combined.engine", std::ios::binary);file.write((char*) serializedEngine->data(), serializedEngine->size());file.close();// Cleanupbuilder->destroy();network->destroy();newEngine->destroy();serializedEngine->destroy();engine1->destroy();engine2->destroy();runtime1->destroy();runtime2->destroy();return 0;
}
在代码示例中,我们使用两个IRuntime实例加载两个engine文件,获取其中的输入和输出张量,并创建一个新的engine文件。然后,我们使用IBuilder创建一个新的网络,并将两个engine文件的输入和输出张量添加到新的网络中。最后,我们使用PluginFactory创建一个自定义插件,并将其添加到新的网络中。使用IBuilder编译新的网络,并使用ICudaEngine序列化并保存到文件。最后,我们清理创建的资源。