C++ Vecter

news/2025/2/12 19:52:50/

C++ Vecter

📟作者主页:慢热的陕西人

🌴专栏链接:C++

📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言

本博客主要内容讲解了C++中vector的介绍以及相关的一些接口的使用

Ⅰ. vector 的介绍和使用

Ⅰ. Ⅰvector的介绍

vector文档

①vector是表示可变大小数组的序列容器。

②就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素 进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自 动处理。

③ 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小 为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是 一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。

④vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存 储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是 对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。

⑤ 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

⑥与其它动态序列容器相比(deque, list and forward_list),vector在访问元素的时候更加高效,在末 尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list 统一的迭代器和引用更好。

Ⅰ. Ⅱvector的使用

vector的学习中我们一定要学会查看文档vector文档,对于vector的使用我们一般只需要熟悉以下常用的接口就可以了!

Ⅰ.Ⅱ .Ⅰvector的定义

(constructor)构造函数声明接口说明
vector()无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造
int TestVector1()
{// constructors used in the same order as described above:vector<int> first;                                // empty vector of intsvector<int> second(4, 100);                       // four ints with value 100vector<int> third(second.begin(), second.end());  // iterating through secondvector<int> fourth(third);                       // a copy of third// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分// the iterator constructor can also be used to construct from arrays:int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}

Ⅰ.Ⅱ .Ⅱvector iterator 的使用

vector的迭代器使用和string的迭代器使用是非常类似的。

iterator的使用接口说明
(begin)+(end)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
(rbegin) + (rend)获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator
void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}

Ⅰ.Ⅱ .Ⅲ空间增长问题

容量空间接口说明
(size)获取数据个数
(capacity)获取容量大小
(empty)判断是否为空
(resize)改变vector的size
(reserve)改变vector的capacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。 这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义 的。vs是PJ版本STL,g++是SGI版本STL。

  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。

  • resize在开空间的同时还会进行初始化,影响size。

    // 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
    // 就可以避免边插入边扩容导致效率低下的问题了
    void TestVectorExpandOP()
    {vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
    }
    

    Ⅰ.Ⅱ .Ⅳ vector的增删查改

    vector增删查改接口说明
    (push_back)尾插
    (pop_back)尾删
    (find)查找。(注意这个是算法模块实现,不是vector的成员接口)
    (insert)在position之前插入val
    (erase)删除position位置的数据
    (swap)交换两个vector的数据空间
    (opeerator[])像数组一样访问[]的重载
    // 尾插和尾删:push_back/pop_back
    void TestVector4()
    {vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);auto it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;v.pop_back();v.pop_back();it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
    }// 任意位置插入:insert和erase,以及查找find
    // 注意find不是vector自身提供的方法,是STL提供的算法
    

    Ⅰ.Ⅱ .Ⅴvector 迭代器失效问题

    迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装,比如:vector的迭代器就是原生态指针T 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。*

    对于vector可能会导致其迭代器失效的操作有:

    会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、 push_back等。

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()
    {vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
    }
    

    ② 指定位置元素的删除操作–erase

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()
    {int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
    }
    

    erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代 器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是 没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

    以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

    #include <iostream>
    using namespace std;
    #include <vector>
    int main()
    {vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
    }
    int main()
    {vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
    }
    

    当然是第二个正确,因为我们在erase的时候有可能会造成迭代器失效,所以我们让it不断的去接收erase返回的迭代器,去更新迭代器,防止迭代器失效问题。

    ③注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

    // 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
    int main()
    {vector<int> v{1,2,3,4,5};for(size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
    }
    程序输出:
    1 2 3 4 5
    扩容之前,vector的容量为: 5
    扩容之后,vector的容量为: 100
    0 2 3 4 5 409 1 2 3 4 5
    // 2. erase删除任意位置代码后,linux下迭代器并没有失效
    // 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
    #include <vector>
    #include <algorithm>
    int main()
    {vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
    }
    程序可以正常运行,并打印:
    4
    4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
    // 此时迭代器是无效的,++it导致程序崩溃
    int main()
    {vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
    }
    ========================================================
    // 使用第一组数据时,程序可以运行
    [sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
    [sly@VM-0-3-centos 20220114]$ ./a.out
    1 3 5
    =========================================================
    // 使用第二组数据时,程序最终会崩溃
    [sly@VM-0-3-centos 20220114]$ vim testVector.cpp
    [sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
    [sly@VM-0-3-centos 20220114]$ ./a.out
    Segmentation fault
    

    从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不 对,如果it不在begin和end范围内,肯定会崩溃的。

    ④与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

    #include <string>
    void TestString()
    {string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it); ++it;}
    }
    

Ⅱ. vector深度剖析及模拟实现

Ⅱ . Ⅰ std::vector的核心框架接口的模拟实现xupt::vector

vector的模拟实现

Ⅱ. Ⅱ使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}

问题分析:

​ ①memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中

​ ②如果拷贝的是非自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

Ⅱ. Ⅲ 动态二维数组理解

// 以杨辉三角的前n行为例:假设n为5
void test2vector(size_t n)
{// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>xupt::vector<xupt::vector<int>> vv(n);// 将二维数组每一行中的vecotr<int>中的元素全部设置为1for (size_t i = 0; i < n; ++i)vv[i].resize(i + 1, 1);// 给杨辉三角出第一列和对角线的所有元素赋值for (int i = 2; i < n; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}
}

xupt::vector<xupt vector<int>> vv(n);构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类 型的,每行没有包含任何元素,如果n为5时如下所示:

在这里插入图片描述

vv中元素填充完成之后,如下图所示:

在这里插入图片描述

使用标准库中vector构建动态二维数组时与上图实际是一致的。

到这本篇博客的内容就到此结束了。
如果觉得本篇博客内容对你有所帮助的话,可以点赞,收藏,顺便关注一下!
如果文章内容有错误,欢迎在评论区指正

在这里插入图片描述


http://www.ppmy.cn/news/92752.html

相关文章

C++ 常见编译器的安装和使用(C++复习向p2)

主要的C编译器: GCC(GNU Compiler Collection): 它是由GNU计划开发的集合,包括C、C、Java等多种编程语言的编译器。GCC免费且开源。 Clang: 它是一个开源的C语言编译器和C语言分析器。Clang是LLVM项目的前端。 Visual C: Microsoft提供的C编译器,用于Windows操作系统。Visual…

基于DDSRF正负序分离方法的不平衡电网PQ控制策略_平衡电流控制

0.前言 对于并网逆变器而言&#xff0c;电网会存在不平衡的情况。在这种情况下&#xff0c;不平衡的电网电压可以分解成为正序、负序和零序分量。并网逆变器通常期望能够实现单位功率因数并网&#xff0c;向电网注入对称的正弦电流&#xff0c;所以此时的微电网逆变器控制策略显…

基于网络的虚拟仪器测试系统

引 言 著名科学家门捷列夫说&#xff1a;“没有测量&#xff0c;就没有科学”。测量科学的先驱凯尔文又说&#xff0c;一个事物你如果能够测量它&#xff0c;并且能用数字来表达它&#xff0c;你对它就有了深刻的了解&#xff1b;但如果你不知道如何测量它&#xff0c;且不能用…

深度学习4 -- 卷积神经网络(代码实现篇+付详细流程文件)

引言 本文是使用pytorch对卷积神经网络(Convolutional Neural Network, CNN)的代码实现&#xff0c;作为之前介绍CNN原理的一个代码补充。本文代码相关介绍相对较为详细&#xff0c;也为自己的一个学习过程&#xff0c;有错误的地方欢迎指正。本人介绍CNN原理的链接:CNN原理介…

【业务架构】业务驱动的推荐系统相关技术总结

什么是推荐系统 推荐系统是一种基于用户历史行为和属性信息为用户推荐个性化内容的技术。而业务驱动的推荐系统&#xff0c;是指根据业务需求&#xff0c;将推荐系统集成进业务流程中&#xff0c;通过推荐系统提高业务效率、提升用户体验等目的。以下是一些相关实现技术。 用户…

110kV变电站设计

摘要 由于国内人民生活水平的提高&#xff0c;科技不断地进步&#xff0c;控制不断地完善&#xff0c;从而促使变电站设计技术在电气系统领域占据主导权&#xff0c;也使得110kV变电站被广泛应用。在变电站系统设计领域中&#xff0c;110kV变电站成为目前一处亮丽的风景线&…

APIO 2023 游记

很幸运&#xff0c;由于 CSP 的超常发挥&#xff0c;拿到了线下的入场券。 省流&#xff1a;打铁了…… Day -3 ~ Day 0 打了三天真题&#xff08;分别是 2009&#xff0c;2011&#xff0c;2012&#xff09;&#xff0c;都过了 Ag 线&#xff0c;有一场过了 Au 线。 打了一…

MVC模式和三层架构(附综合案例增删改查)

MVC模式和三层架构 MVC模式 MVC 是一种分层开发的模式&#xff0c;其中&#xff1a; M&#xff1a;Model&#xff0c;业务模型&#xff0c;处理业务 V&#xff1a;View&#xff0c;视图&#xff0c;界面展示 C&#xff1a;Controller&#xff0c;控制器&#xff0c;处理请求…