源码分享-go语言实现的snow3g加密算法

news/2025/3/15 20:21:29/

源码路径:free5gc/nas/security/snow3g

  1. snow3g.go
package snow3gvar sr = [...]byte{0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
}var sq = [...]byte{0x25, 0x24, 0x73, 0x67, 0xd7, 0xae, 0x5c, 0x30, 0xa4, 0xee, 0x6e, 0xcb, 0x7d, 0xb5, 0x82, 0xdb,0xe4, 0x8e, 0x48, 0x49, 0x4f, 0x5d, 0x6a, 0x78, 0x70, 0x88, 0xe8, 0x5f, 0x5e, 0x84, 0x65, 0xe2,0xd8, 0xe9, 0xcc, 0xed, 0x40, 0x2f, 0x11, 0x28, 0x57, 0xd2, 0xac, 0xe3, 0x4a, 0x15, 0x1b, 0xb9,0xb2, 0x80, 0x85, 0xa6, 0x2e, 0x02, 0x47, 0x29, 0x07, 0x4b, 0x0e, 0xc1, 0x51, 0xaa, 0x89, 0xd4,0xca, 0x01, 0x46, 0xb3, 0xef, 0xdd, 0x44, 0x7b, 0xc2, 0x7f, 0xbe, 0xc3, 0x9f, 0x20, 0x4c, 0x64,0x83, 0xa2, 0x68, 0x42, 0x13, 0xb4, 0x41, 0xcd, 0xba, 0xc6, 0xbb, 0x6d, 0x4d, 0x71, 0x21, 0xf4,0x8d, 0xb0, 0xe5, 0x93, 0xfe, 0x8f, 0xe6, 0xcf, 0x43, 0x45, 0x31, 0x22, 0x37, 0x36, 0x96, 0xfa,0xbc, 0x0f, 0x08, 0x52, 0x1d, 0x55, 0x1a, 0xc5, 0x4e, 0x23, 0x69, 0x7a, 0x92, 0xff, 0x5b, 0x5a,0xeb, 0x9a, 0x1c, 0xa9, 0xd1, 0x7e, 0x0d, 0xfc, 0x50, 0x8a, 0xb6, 0x62, 0xf5, 0x0a, 0xf8, 0xdc,0x03, 0x3c, 0x0c, 0x39, 0xf1, 0xb8, 0xf3, 0x3d, 0xf2, 0xd5, 0x97, 0x66, 0x81, 0x32, 0xa0, 0x00,0x06, 0xce, 0xf6, 0xea, 0xb7, 0x17, 0xf7, 0x8c, 0x79, 0xd6, 0xa7, 0xbf, 0x8b, 0x3f, 0x1f, 0x53,0x63, 0x75, 0x35, 0x2c, 0x60, 0xfd, 0x27, 0xd3, 0x94, 0xa5, 0x7c, 0xa1, 0x05, 0x58, 0x2d, 0xbd,0xd9, 0xc7, 0xaf, 0x6b, 0x54, 0x0b, 0xe0, 0x38, 0x04, 0xc8, 0x9d, 0xe7, 0x14, 0xb1, 0x87, 0x9c,0xdf, 0x6f, 0xf9, 0xda, 0x2a, 0xc4, 0x59, 0x16, 0x74, 0x91, 0xab, 0x26, 0x61, 0x76, 0x34, 0x2b,0xad, 0x99, 0xfb, 0x72, 0xec, 0x33, 0x12, 0xde, 0x98, 0x3b, 0xc0, 0x9b, 0x3e, 0x18, 0x10, 0x3a,0x56, 0xe1, 0x77, 0xc9, 0x1e, 0x9e, 0x95, 0xa3, 0x90, 0x19, 0xa8, 0x6c, 0x09, 0xd0, 0xf0, 0x86,
}type snow3g struct {lfsr [16]uint32fsm  [3]uint32
}func mulx(V, c byte) byte {if V&0x80 != 0 {return (V << 1) ^ c} else {return V << 1}
}func mulxPow(V, i, c byte) byte {if i == 0 {return V} else {return mulx(mulxPow(V, i-1, c), c)}
}func s1(w uint32) uint32 {w0 := (w >> 24) & 0xffw1 := (w >> 16) & 0xffw2 := (w >> 8) & 0xffw3 := w & 0xffr0 := uint32(mulx(sr[w0], 0x1b) ^ sr[w1] ^ sr[w2] ^ mulx(sr[w3], 0x1b) ^ sr[w3])r1 := uint32(mulx(sr[w0], 0x1b) ^ sr[w0] ^ mulx(sr[w1], 0x1b) ^ sr[w2] ^ sr[w3])r2 := uint32(sr[w0] ^ mulx(sr[w1], 0x1b) ^ sr[w1] ^ mulx(sr[w2], 0x1b) ^ sr[w3])r3 := uint32(sr[w0] ^ sr[w1] ^ mulx(sr[w2], 0x1b) ^ sr[w2] ^ mulx(sr[w3], 0x1b))return (r0 << 24) | (r1 << 16) | (r2 << 8) | r3
}func s2(w uint32) uint32 {w0 := (w >> 24) & 0xffw1 := (w >> 16) & 0xffw2 := (w >> 8) & 0xffw3 := w & 0xffr0 := uint32(mulx(sq[w0], 0x69) ^ sq[w1] ^ sq[w2] ^ mulx(sq[w3], 0x69) ^ sq[w3])r1 := uint32(mulx(sq[w0], 0x69) ^ sq[w0] ^ mulx(sq[w1], 0x69) ^ sq[w2] ^ sq[w3])r2 := uint32(sq[w0] ^ mulx(sq[w1], 0x69) ^ sq[w1] ^ mulx(sq[w2], 0x69) ^ sq[w3])r3 := uint32(sq[w0] ^ sq[w1] ^ mulx(sq[w2], 0x69) ^ sq[w2] ^ mulx(sq[w3], 0x69))return (r0 << 24) | (r1 << 16) | (r2 << 8) | r3
}func mulAlpha(c byte) uint32 {r0 := uint32(mulxPow(c, 23, 0xa9))r1 := uint32(mulxPow(c, 245, 0xa9))r2 := uint32(mulxPow(c, 48, 0xa9))r3 := uint32(mulxPow(c, 239, 0xa9))return (r0 << 24) | (r1 << 16) | (r2 << 8) | r3
}func divAlpha(c byte) uint32 {r0 := uint32(mulxPow(c, 16, 0xa9))r1 := uint32(mulxPow(c, 39, 0xa9))r2 := uint32(mulxPow(c, 6, 0xa9))r3 := uint32(mulxPow(c, 64, 0xa9))return (r0 << 24) | (r1 << 16) | (r2 << 8) | r3
}func (s *snow3g) lfsrInitializationMode(F uint32) {v := (s.lfsr[0] << 8) ^ mulAlpha(byte(s.lfsr[0]>>24)&0xff) ^ s.lfsr[2] ^ (s.lfsr[11] >> 8) ^divAlpha(byte(s.lfsr[11]&0xff)) ^ Ffor i := 0; i < 15; i++ {s.lfsr[i] = s.lfsr[i+1]}s.lfsr[15] = v
}func (s *snow3g) lfsrKeystreamMode() {v := (s.lfsr[0] << 8) ^ mulAlpha(byte(s.lfsr[0]>>24)&0xff) ^ s.lfsr[2] ^ (s.lfsr[11] >> 8) ^divAlpha(byte(s.lfsr[11]&0xff))for i := 0; i < 15; i++ {s.lfsr[i] = s.lfsr[i+1]}s.lfsr[15] = v
}func (s *snow3g) clockFsm(s15, s5 uint32) uint32 {F := (s15 + s.fsm[0]) ^ s.fsm[1]r := s.fsm[1] + (s.fsm[2] ^ s5)s.fsm[2] = s2(s.fsm[1])s.fsm[1] = s1(s.fsm[0])s.fsm[0] = rreturn F
}func newSnow3g(k, iv [4]uint32) *snow3g {s := &snow3g{}s.lfsr[0] = k[0] ^ 0xffffffffs.lfsr[1] = k[1] ^ 0xffffffffs.lfsr[2] = k[2] ^ 0xffffffffs.lfsr[3] = k[3] ^ 0xffffffffs.lfsr[4] = k[0]s.lfsr[5] = k[1]s.lfsr[6] = k[2]s.lfsr[7] = k[3]s.lfsr[8] = k[0] ^ 0xffffffffs.lfsr[9] = k[1] ^ 0xffffffff ^ iv[3]s.lfsr[10] = k[2] ^ 0xffffffff ^ iv[2]s.lfsr[11] = k[3] ^ 0xffffffffs.lfsr[12] = k[0] ^ iv[1]s.lfsr[13] = k[1]s.lfsr[14] = k[2]s.lfsr[15] = k[3] ^ iv[0]for i := 0; i < 3; i++ {s.fsm[i] = 0}for i := 0; i < 32; i++ {F := s.clockFsm(s.lfsr[15], s.lfsr[5])s.lfsrInitializationMode(F)}return s
}func (s *snow3g) generateKeystream(n int, ks []uint32) {s.clockFsm(s.lfsr[15], s.lfsr[5])s.lfsrKeystreamMode()for i := 0; i < n; i++ {F := s.clockFsm(s.lfsr[15], s.lfsr[5])ks[i] = F ^ s.lfsr[0]s.lfsrKeystreamMode()}
}func GetKeyStream(k, iv [4]uint32, n int) []uint32 {s := newSnow3g(k, iv)ks := make([]uint32, n)s.generateKeystream(n, ks)return ks
}
  1. snow3g_test.go
package snow3gimport ("testing""github.com/stretchr/testify/require"
)func TestSnow3g(t *testing.T) {t.Parallel()testCases := []struct {name   stringk      [4]uint32iv     [4]uint32z      []uint32length int}{{name:   "TestCase1",k:      [4]uint32{0x2bd6459f, 0x82c5b300, 0x952c4910, 0x4881ff48},iv:     [4]uint32{0xea024714, 0xad5c4d84, 0xdf1f9b25, 0x1c0bf45f},z:      []uint32{0xabee9704, 0x7ac31373},length: 2,},{name:   "TestCase2",k:      [4]uint32{0x8ce33e2c, 0xc3c0b5fc, 0x1f3de8a6, 0xdc66b1f3},iv:     [4]uint32{0xd3c5d592, 0x327fb11c, 0xde551988, 0xceb2f9b7},z:      []uint32{0xeff8a342, 0xf751480f},length: 2,},{name:   "TestCase3",k:      [4]uint32{0x4035c668, 0x0af8c6d1, 0xa8ff8667, 0xb1714013},iv:     [4]uint32{0x62a54098, 0x1ba6f9b7, 0x4592b0e7, 0x8690f71b},z:      []uint32{0xa8c874a9, 0x7ae7c4f8},length: 2,},{name:   "TestCase4",k:      [4]uint32{0x0ded7263, 0x109cf92e, 0x3352255a, 0x140e0f76},iv:     [4]uint32{0x6b68079a, 0x41a7c4c9, 0x1befd79f, 0x7fdcc233},z:      []uint32{0xd712c05c, 0xa937c2a6, 0xeb7eaae3},length: 3,},}for _, tc := range testCases {t.Run(tc.name, func(t *testing.T) {ks := GetKeyStream(tc.k, tc.iv, tc.length)require.Equal(t, tc.z, ks)})}
}

http://www.ppmy.cn/news/911412.html

相关文章

tta部署_TTA、丰源轮胎云平台项目战略合作交接仪式

2017年5月12日&#xff0c;TTA轮胎设计云平台交付仪式在丰源轮胎研究开发中心隆重举行&#xff0c;TTA董事长Siggi先生、总经理李红卫博士和丰源轮胎股份有限公司董事长王中江、总工程师罗吉良、副总工程师张哲峰及双方相关技术人员出席了交付仪式。 随着Siggi先生将轮胎设计云…

深度学习中的TTA(Test Time Augmentation)--测试时数据增强技术

定义:TTA(Test Time Augmentation):测试时数据增强 方法:测试时将原始数据做不同形式的增强,然后取结果的平均值作为最终结果 作用:可以进一步提升最终结果的精度 原因:如果只对图像做一种增强时,采用的变换可能会使图像关键信息(即特征)丢失, 比如在对图像做剪切变换时,可能会…

图像分类竞赛——Test Time Augmentation(TTA)

TTA介绍 Test Time Augmentation&#xff08;TTA&#xff09;&#xff0c;测试数据增强&#xff0c;是在测试阶段时&#xff0c;将输入的测试数据进行&#xff0c;翻转、旋转操作等数据增强&#xff0c;并最后对同一样本的不同数据增强的结果根据任务需求进行例如平均&#xf…

kaggle可插拔tta应用记录

链接&#xff1a;https://www.kaggle.com/leighplt/pytorch-tta-flip-left-right tta 见过不少了&#xff0c;今天发现一个python的代码技巧记录一下 import os import numpy as np import matplotlib.pyplot as plt import pandas as pdimport torch from torch import nn fr…

Kaggle小技巧:TTA(test time augmentation)测试时增强

文章目录 1.原理简述2.代码实现 1.原理简述 TTA&#xff1a;test time augmentation 顾名思义是测试时增强的意思&#xff0c;可将准确率提高若干个百分点&#xff0c;它就是测试时增强&#xff08;test time augmentation, TTA&#xff09;。这里会为原始图像造出多个不同版本…

目标检测之测试时间增强(TTA)

TTA 简单说明&#xff1a; augment&#xff1a; 对图像进行TTA操作&#xff1b; batch_augment&#xff1a;对一批图像进行TTA操作&#xff1b; deaugment_boxes: 对预测框进行TTA操作&#xff0c;该操作与输入图像相反。 class BaseWheatTTA:""" author: sho…

TTA(Test-Time Augmentation) 之Pytorch

TTA(Test-Time Augmentation) ,即测试时的数据增强 实现步骤如下: 将1个batch的数据通过flips, rotation, scale, etc.等操作生成batches将各个batch分别输入网络每个batch的masks/labels反向转换通过mean, max, gmean, etc.合并各个batch预测的结果最后输出最终的masks/labels…

Kaggle提示:TTA(测试时间增加),小,技巧,TTAtesttimeaugmentation,增强

文章目录 1.原理简述 2.代码实现 1.原理简述 TTA&#xff1a;test time augmentation 顾名思义是测试时增强的意思&#xff0c;可将准确率提高若干个百分点&#xff0c;它就是测试时增强&#xff08;test time augmentation, TTA&#xff09;。这里会为原始图像造出多个不同版本…