特别行动队
【问题描述】
你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号应该连续,即为形如(i, i + 1, …, i + k)的序列。
编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内士兵初始战斗力之和,即 x = xi + xi+1 + … + xi+k。
通过长期的观察,你总结出一支特别行动队的初始战斗力 x 将按如下经验公式修正为 x':x' = ax2 + bx + c,其中 a, b, c 是已知的系数(a < 0)。
作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后战斗力之和最大。试求出这个最大和。
例如,你有 4 名士兵,x1 = 2, x2 = 2, x3 = 3, x4 = 4。经验公式中的参数为 a = –1,b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵
1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它
方案能使修正后的战斗力和更大。
【输入格式】
输入由三行组成。第一行包含一个整数 n,表示士兵的总数。第二行包含三个整数 a, b, c,经验公式中各项的系数。第三行包含 n 个用空格分隔的整数 x1,x2, …, xn,分别表示编号为 1, 2, …, n 的士兵的初始战斗力。
【输出格式】
输出一个整数,表示所有特别行动队修正后战斗力