二总线-MBus讲解

news/2024/10/21 5:39:44/

    二总线的叫法演变是从多线到总线再到二总线这么一个过程,尤其在楼宇的消防领域,报警的设备总线基本已经是二总线了,其特点就是电源与通信一起传输,本质上是一个电力载波的思路。那么现在的powerbus二总线又是一个极端,做了更大的电力能量传输,但稳定性还有待商榷。

本文关于MBUS二总线的介绍多借鉴于©2023 Yang Li. All rights reserved的内容,由于在浏览华为的逆变器参数时看到了其产品比较多的使用了MUBS二总线技术,因此特意找了些内容做更详细的了解,特此记录。

章目录

  • 二总线的定义
  • M-BUS
    • M-BUS链路层
    • M-BUS物理层
      • M-BUS物理层/主站发送电路
      • M-BUS物理层/主站接收电路
      • M-BUS物理层/从站接口电路
  • M-BUS的迭代

二总线的定义

二总线是一种相对于四线系统(两根供电线路、两根通讯线路),将供电线与信号线合二为一,实现了信号和供电共用一个总线的技术。二总线节省了施工和线缆成本,给现场施工和后期维护带来了极大的便利。在消防,仪表,传感器,工业控制等领域广泛的应用。在时间的维度上最早且典型二总线技术就是M-BUS。
二总线布线方式

M-BUS

M-Bus(Meter Bus)的开发是为了满足众多仪表的远程读数,例如每户的天然气表以及水表。这种总线由总站统一控制读取各个从站(仪表)的度数,并能够给终端提供一定电流的供电。M-Bus对物理层,数据链路层,网络层(可选的),以及应用层均有相应的定义。
M-Bus应用层定义了测量记录的数据类型和数据结构。从站利用这些数据类型和结构将测量记录进行编码处理并传送给数据链路层进行发送处理;主站则根据这些数据类型和结构的定义,对应用层的数据进行相应的解码,从而获取从站的测量数据。
M-Bus定义了多种数据类型,包括无符号BCD整型、二进制整型、无符号二进制整型、布尔型、32bit复合型(表示测量类型、物理单位等)、32bit日期时间型、16bit日期型、浮点型。在这些数据类型的基础上,M-Bus定义了两种数据结构:固定数据结构和可变数据结构。 M-Bus的应用层同时定义了一些对链路层的”配置命令”的定义,包括波特率等。
应用层定义的数据类型和数据结构的定义对于M-Bus在抄表业的应用具有重要的现实意义,因为本身这种总线就是脱胎于仪表的计数读取这种需求,而这不是我们关心的重点,于是就不再这里赘述了。

M-BUS链路层

链路层作为保证数据传输完整以及可靠性的通信层。它定义了由起始位,数据位,奇偶校验为以及停止位构成的帧格式(与串口一致),并定义了单字节报文,短报文,以及长报文和长报文的特例控制报文四种报文格式。其中C-Field中的后四位规定了5种报文作用。
第一种命名为SND_NKE,其见于短报文中,用于主站发送给从站让其进行初始化,从站在接收之后回复单字节报文表示收到。
第二种命名为SND_UD,其见于长/控制报文,用于主站发送给从站数据。
第三种和第四种分别为REQ_UD1/REQ_UD2,见于短报文,用于主控制器发送给从站,请求级别1、级别2的数据回复。
第五种RSP_UD,见于长/控制报文,为从站回复的数据,在主控制发送请求数据的报文之后。
C-Field在由主站发送的报文REQ_UD1/REQ_UD2 中,如果第六位FCV置位,则第五位FCB每次发送都会置反。这样从站就能通过FCB来判断回复上一条信息还是新的信息。从站在判断FCV置位的基础上,如果FCB与上一条报文FCB保持一致,则回复历史信息,如果与上一条报文的FCB不一致,则回复新的信息。主站如果发送REQ_UD1/REQ_UD2,从站如果未回复RSP_UD ,则FCB保持一致,并不置反。
在这种机制下,主站需要针对每个从站保存一个FCB位,而每个从站需要保存一个上一条报文的FCB位。
报文格式

M-BUS物理层

M-Bus采取电平特征传输数字信号,下行电压,上行电流。
总线两端稳定电压:Vmark时表示逻辑Bit1,Vspace= Vmark-12V表示逻辑Bit0。主站通过Vmark与V Vspace的电压跳变脉冲向从站发送帧数据。
总线稳定电流=Imark*从站个数,表示逻辑Bit1。设总线上只有一个从站,那么总线稳定电流= Imark,则Ispace=Imark+(1120)mA,表示逻辑0.即从站从总线上吃掉1120mA电流发送Bit0。从站发送高度为(11~20)mA的电流脉冲向主站发送帧数据。
Mbus物理电平
M-Bus总线为单工,异步的通信这是因为如上图所示,从站向主站发送数据的时候,会引起总线上的电压被拉低。所以当从站发送数据的时候,主站无法发送数据。

M-BUS物理层/主站发送电路

主站的发送电路设计主要考虑发送Bit0与Bit1的电压变化量要大于等于12V;电路驱动几十上百个智能表不能影响发送电压低于12V。
出于这两个问题的考虑,用两个直流稳压器应该可以满足满足要求,下面左边是发送电路的框图,右边是发送电路原理图。
M-BUS主站发送电路

M-BUS物理层/主站接收电路

接口电路接收部分的主要难点是不要误读。在一个稳压电路中要读取它的电流,就象是在测它的纹波一样,串一个取样电阻是需要的。首先稳压电路本身纹波很小,取样电阻大了影响发送时的稳压效果,小了又取不出可用值。其实是要排除负载的变化对接收波形的影响,左边为主站接收电路框图,右边为电路原理图。
M-BUS主站接收电路

M-BUS物理层/从站接口电路

TSS721A接口芯片是MBus协议组织与TI公司合作开发的MBus协议从站专用接口芯片,遵循EN1434-3标准。借助TI公司的强大技术力量,TSS721A接口芯片实现了MBus协议对物理层的各项规定要求,有力地推动了MBus协议的推广。根据MBus总线物理层的相关定义,TSS721A从站接口芯片具备检测总线电压(接收数据)和调制总线电流(发送数据)的功能。TSS721A除了MBus通信功能外,还对MBus总线远程供电和电池供电提供了很好的支持。
TSS721接口芯片可以提供通过VDD引脚输出的3.3v稳压给MCU供电。芯片引脚PF直接接到外接MCU,用于掉电信号报警,当PF引脚有效时,MCU应保存相应数据。VS引脚会根据输电压VDD的状态,自动切换使用VDD或者电池进行供电。
TSS721电路

M-BUS的迭代

因为M-BUS在布线上具有得天独厚的优势(两根线),很多现场总线的应用场景都把这种技术作为考虑的方案之一,但是因为其对单个从站在功耗上的严苛要求,以及对整个总线上设备总量的限制和布线长度的要求,使得其针对各种仪表信息的数据采集非常适用,但是对其余的应用场景不适用。
现在市面上迭代了能够拉取更高静态电流的从站模块以应对那种带有电动阀的仪表,甚至有成对的主从芯片来提供M-BUS的物理层实现,不用再搭建主站的收发电路,且从站能有更高的功耗。


http://www.ppmy.cn/news/90004.html

相关文章

知识变现海哥:如何把自己的想法变现?

高手都懂得,简单三招,卖掉自己的想法。 把自己的思维装入别人的大脑,把别人的钱装进自己的口袋。 招一:把已知的事情和知识,变成未知的。 网络自媒体大行其道,你经常会看到听到一些新名词,仔细…

学习go的操作(本人已有c的基础,请思考后再看)

建立一个文件(我的第一个文件是hellow.go),后在终端执行一下几步:我用的是go build先编译成了可执行文件(.exe)【1.go build hellow.go 2.hellow.exe】。当然,你也可以用go run直接运行【…

00后学什么技术有前途?2023年Java和前端发展前景分析!

00后的你还在想着进厂吗?每天在流水线上打螺丝,过着一成不变的日子,而且每个月就休息那么几天。如果你不想进厂,特别是对那些20岁刚出头或者学历不是那么有优势的年轻人,好程序员建议还是应该去学习一门技术&#xff0…

论文解读 | IROS 2022:MV6D:在RGB-D图像上使用深度逐点投票网络进行多视角6D姿态估计

原创 | 文 BFT机器人 01 研究背景 在计算机视觉领域,6D姿态估计是一种重要的任务,用于确定物体在3D空间中的位置和方向。它在许多应用领域具有广泛的应用,如机器人操作、虚拟现实、增强现实、物体跟踪等。 然而,传统的6D姿态估计方…

VMWare ESXI6.7创建虚拟机

VMware ESXi:专门构建的裸机 管理程序 首先开启ESXI主机 登录ESXI 打开浏览器输入物理机ip,输入账号密码进行登录 创建虚拟机 选择创建类型 创建RedHat7.6 选择存储类型和数据存储 仅一个存储,直接点下一页即可 配置虚拟机硬件和虚拟机附…

高速高密PCB高级验证技巧(四): 扫除信号线的意外回音

现今电子产品复杂度越趋增加,信号速度越来越快,在信号传输的过程中,如果信号不断反射便会对电子产品的运作造成影响,而这又与阻抗连续性以及阻抗匹配息息相关;而如何避免信号反射,除了在硬件设计时的规划外…

检错纠错理论——海明码与海明距离

概念解释 先说明几个概念(非严谨定义) 码字:一个包含了数据位和校验位的n位单元,也就是“一种”编码 编码:由码字组成的可以表达传递信息的集合,这里不是指编码的过程,而是一个名词。一个编码…

超越竞争的获客之道:DTC品牌出海策略全面解析

随着全球数字化的快速发展,DTC品牌正迎来一个全新的时代。然而,随着越来越多的DTC品牌进入国际市场,如何在激烈的竞争中脱颖而出,并获得新客户成为一个关键的挑战。本文Nox聚星将和大家深入探讨DTC品牌在出海时代如何破解获客困局…