【重新定义matlab强大系列十】函数normalize进行归一化数据

news/2024/11/8 3:43:22/

🔗 运行环境:Matlab

🚩 撰写作者:左手の明天

🥇 精选专栏:《python》

🔥  推荐专栏:《算法研究》

#### 防伪水印——左手の明天 ####

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天开启新的系列——重新定义matlab强大系列💗

📆  最近更新:2023 年 05 月 25 日,左手の明天的第 286 篇原创博客

📚 更新于专栏:matlab

#### 防伪水印——左手の明天 ####


🔥函数说明

N = normalize(A) 按向量返回 A 中数据的z值(中心为 0、标准差为 1)。

  • 如果 A 是向量,则 normalize 对整个向量 A 进行运算。

  • 如果 A 是矩阵,则 normalize 分别对 A 的每列进行运算。

  • 如果 A 是多维数组,则 normalize 沿 A 的大小不等于 1 的第一个维度进行运算。

  • 如果 A 是表或时间表,则 normalize 分别对 A 的每个变量进行运算。

N = normalize(A,dim) 指定要沿其进行运算的 A 的维度。例如,normalize(A,2) 对每个行进行归一化。

N = normalize(___,method) 使用上述任一语法指定归一化方法。例如,normalize(A,'norm') 通过欧几里德范数(2-范数)对 A 中的数据进行归一化。

N = normalize(___,method,methodtype) 指定给定方法的归一化类型。例如,normalize(A,'norm',Inf) 使用无穷范数归一化 A 中的数据。

method — 归一化方法

归一化方法,指定为下列选项之一:

方法

描述

'zscore'

均值为 0、标准差为 1 的 z值。

'norm'

2-范数。

'scale'

按标准差缩放。

'range'

将数据范围重新缩放至 [0,1]。

'center'

对数据进行中心化以使其均值为 0。

'medianiqr'

中心化和缩放数据,使中位数为 0 且四分位差为 1。

要返回函数用于归一化数据的形参,请指定 C 和 S 输出实参。

methodtype — 方法类型

方法类型,指定为数组、表、二元素行向量或类型名称,具体取决于指定的方法:

方法

方法类型选项

描述

'zscore'

'std'(默认值)

中心化并缩放,使之均值为 0,标准差为 1。

'robust'

中心化并缩放,使之中位数为 0,中位数绝对偏差为 1。

'norm'

正数值标量(默认值为 2)

p-范数

Inf

无穷范数。

'scale'

'std'(默认值)

按标准差缩放。

'mad'

按中位数绝对偏差缩放。

'first'

按数据的第一个元素进行缩放。

'iqr'

按四分位差 缩放。

数值数组

按数值缩放。

使用表中的变量缩放。输入数据 A 中的每个表变量都使用缩放表中名称相似的变量的值进行缩放。

'range'

二元素行向量(默认为 [0 1])

将数据范围重新缩放至 [a b] 形式的区间,其中 a < b

'center'

'mean'(默认值)

中心化以使其均值为 0。

'median'

中心化以使其中位数为 0。

数值数组

按数值平移中心。该数组必须具有与输入 A 兼容的大小

使用表中的变量平移中心。输入数据 A 中的每个表变量使用中心化表中名称相似的变量中的值进行中心化。

要返回函数用于归一化数据的形参,请指定 C 和 S 输出实参。

N = normalize(___,'center',centertype,'scale',scaletype​​​​​​​) 同时使用 'center' 和 'scale' 方法。只有这两种方法可以一起使用。如果未指定 centertype 或 scaletype,则 normalize 将使用该方法的默认方法类型(中心化以使均值为 0 并按标准差缩放)。

此语法支持使用任意中心化和缩放类型同时执行这两个方法。例如,N = normalize(A,'center','median','scale','mad')。您也可以使用此语法指定以前计算的归一化的中心化和缩放值 C 和 S。例如,用 [N1,C,S] = normalize(A1) 归一化一个数据集并保存参数。然后,用 N2 = normalize(A2,'center',C,'scale',S) 对不同数据集重用这些参数。

N = normalize(___,Name,Value) 使用一个或多个名称-值参数指定用于平滑处理的其他参数。例如,当 A 是表或时间表时,normalize(A,'DataVariables',datavars) 对 datavars 指定的变量进行归一化。

[N,C,S] = normalize(___) 还返回用于执行归一化的中心化和缩放值 C 和 S。然后,您可以通过 N = normalize(A2,'center',C,'scale',S) 使用 C 和 S 中的值来归一化不同输入数据。

N — 归一化值

归一化值,以数组、表或时间表形式返回。

除非 ReplaceValues 的值为 false,否则 N 与 A 的大小相同。如果 ReplaceValues 的值是 false,则 N 的宽度是输入数据宽度和指定的数据变量数目之和。

normalize 通常对输入表和时间表的所有变量进行运算,以下情况除外:

  • 如果指定 DataVariables,则 normalize 只对指定的变量执行运算。

  • 如果您使用语法 normalize(T,'center',C,'scale',S) 来使用先前计算的参数 C 和 S 来归一化表或时间表 T,则 normalize 会自动使用 C 和 S 中的变量名称来确定要对其进行运算的 T 中的数据变量。

C — 中心化值

中心化值,以数组或表形式返回。

当 A 是数组时,normalize 将 C 和 S 以数组形式返回,满足 N = (A - C) ./ SC 中的每个值都是用于在指定维度上执行归一化的中心化值。例如,如果 A 是 10×10 数据矩阵,并且 normalize 在第一个维度上执行运算,则 C 是 1×10 向量,其中包含 A 中每列的中心化值。

当 A 是表或时间表时,normalize 以表形式返回 C 和 S,其中包含归一化的每个表变量的中心化值和缩放值的表,即 N.Var = (A.Var - C.Var) ./ S.VarC 和 S 的表变量名称与输入中对应的表变量匹配。C 中的每个变量都包含用于归一化 A 中名称相似的变量的中心化值。

S — 缩放值

缩放值,以数组或表形式返回。

当 A 是数组时,normalize 将 C 和 S 以数组形式返回,满足 N = (A - C) ./ SS 中的每个值都是用于在指定维度上执行归一化的缩放值。例如,如果 A 是 10×10 数据矩阵,并且 normalize 在第一个维度上执行运算,则 S 是 1×10 向量,其中包含 A 中每列的缩放值。

当 A 是表或时间表时,normalize 以表形式返回 C 和 S,其中包含归一化的每个表变量的中心化值和缩放值的表,即 N.Var = (A.Var - C.Var) ./ S.VarC 和 S 的表变量名称与输入中对应的表变量匹配。S 中的每个变量都包含用于归一化 A 中名称相似的变量的缩放值。

Z 值

z 值以标准差为单位测量数据点与均值的距离。标准化后的数据集均值为 0,标准差为 1,并保留原始数据集的形状属性(相同的偏斜度和峰度)。

对于具有均值 μ 和标准差 σ 的随机变量 X,值 x 的 z 值是 z=(x−μ)/σ.。对于具有均值 ‾‾X 和标准差 S 的采样数据,数据点 x 的 z 值是 z=(x−‾‾X)/S.

P-范数

具有 N 个元素的向量 v 的 p-范数的常规定义是

 

,其中 p 是任何正的实数值、Inf 或 -Inf。p 的一些常见值是 1、2 和 Inf

  • 如果 p 为 1,则所得的 1-范数是向量元素的绝对值之和。

  • 如果 p 为 2,则所得的 2-范数是向量的模或欧几里德长度。

  • 如果 p 为 Inf,则 ‖v‖∞=maxi(∣v(i)∣)。

重新缩放

重新缩放通过沿数字线拉伸或压缩点来更改数据集中最小值和最大值之间的距离。数据的 z 分数会保留,因此分布的形状保持不变。

将数据 X 重新缩放到任意区间 [a b] 的方程是

虽然 normalize 和 rescale 函数都可以将数据重新缩放到任意区间,但 rescale 还允许将输入数据裁剪到指定的最小值和最大值。

四分位差

数据集的四分位差 (IQR) 说明对值进行排序时中间 50% 的值的范围。如果数据的中位数为 Q2,数据下半部分的中位数为 Q1,数据上半部分的中位数为 Q3,则 IQR = Q3 - Q1。

当数据包含离群值(非常大或非常小的值)时,IQR 通常优于查看全部数据范围,因为 IQR 排除了数据中最大 25% 和最小 25% 的值。

中位数绝对偏差

数据集的中位数绝对偏差 (MAD) 是距数据中位数 ˜X 的绝对偏差的中位数值:MAD=median(∣∣x−˜X∣∣)。因此,MAD 说明数据相对于中位数的变异性。

当数据包含离群值(非常大或非常小的值)时,MAD 通常优于使用数据的标准差,因为标准差对距均值的偏差求平方,从而使离群值的影响过大。相反,少量离群值的偏差不会影响 MAD 的值。

 

🔥示例

向量和矩阵数据

通过计算 Z 分数来归一化向量和矩阵中的数据。

创建一个向量 v 并计算 Z 分数,从而将数据归一化,使其均值为 0,标准差为 1。

v = 1:5;
N = normalize(v)
N = 1×5-1.2649   -0.6325         0    0.6325    1.2649

创建一个矩阵 B 并计算每列的 Z 分数。然后,对每个行进行归一化。

B = magic(3)
B = 3×38     1     63     5     74     9     2
N1 = normalize(B)
N1 = 3×31.1339   -1.0000    0.3780-0.7559         0    0.7559-0.3780    1.0000   -1.1339
N2 = normalize(B,2)
N2 = 3×30.8321   -1.1094    0.2774-1.0000         0    1.0000-0.2774    1.1094   -0.8321

缩放数据

对向量 A 按其标准差进行缩放。

A = 1:5;
Ns = normalize(A,'scale')
Ns = 1×50.6325    1.2649    1.8974    2.5298    3.1623

对 A 进行缩放,使其范围在 [0,1] 区间内。

Nr = normalize(A,'range')
Nr = 1×50    0.2500    0.5000    0.7500    1.0000

指定方法类型

创建向量 A 并用它的 1-范数对其进行归一化。

A = 1:5;
Np = normalize(A,'norm',1)
Np = 1×50.0667    0.1333    0.2000    0.2667    0.3333

对 A 中的数据进行中心化,使其均值为 0。

Nc = normalize(A,'center','mean')
Nc = 1×5-2    -1     0     1     2

表变量

创建一个表,其中包含五个人的身高信息。

LastName = {'Sanchez';'Johnson';'Lee';'Diaz';'Brown'};
Height = [71;69;64;67;64];
T = table(LastName,Height)
T=5×2 tableLastName     Height_________    ______'Sanchez'      71  'Johnson'      69  'Lee'          64  'Diaz'         67  'Brown'        64  

按最大身高对身高数据进行归一化。

N = normalize(T,'norm',Inf,'DataVariables','Height')
N=5×2 tableLastName     Height _________    _______'Sanchez'          1'Johnson'    0.97183'Lee'        0.90141'Diaz'       0.94366'Brown'      0.90141

用相同的参数归一化多个数据集

归一化数据集,返回计算出的参数值,并重用这些参数以对另一个数据集应用相同的归一化。

创建一个包含两个变量 Temperature 和 WindSpeed 的时间表。然后用同样的变量创建第二个时间表,但使用的采样是一年后收集的。

rng default 
Time1 = (datetime(2019,1,1):days(1):datetime(2019,1,10))';
Temperature = randi([10 40],10,1);
WindSpeed = randi([0 20],10,1);
T1 = timetable(Temperature,WindSpeed,'RowTimes',Time1)
T1=10×2 timetableTime        Temperature    WindSpeed___________    ___________    _________01-Jan-2019        35             3    02-Jan-2019        38            20    03-Jan-2019        13            20    04-Jan-2019        38            10    05-Jan-2019        29            16    06-Jan-2019        13             2    07-Jan-2019        18             8    08-Jan-2019        26            19    09-Jan-2019        39            16    10-Jan-2019        39            20    
Time2 = (datetime(2020,1,1):days(1):datetime(2020,1,10))';
Temperature = randi([10 40],10,1);
WindSpeed = randi([0 20],10,1);
T2 = timetable(Temperature,WindSpeed,'RowTimes',Time2)
T2=10×2 timetableTime        Temperature    WindSpeed___________    ___________    _________01-Jan-2020        30            14    02-Jan-2020        11             0    03-Jan-2020        36             5    04-Jan-2020        38             0    05-Jan-2020        31             2    06-Jan-2020        33            17    07-Jan-2020        33            14    08-Jan-2020        22             6    09-Jan-2020        30            19    10-Jan-2020        15             0    

将第一个时间表归一化。指定三个输出:归一化后的表,以及函数用于执行归一化的中心化和缩放参数值 C 和 S

[T1_norm,C,S] = normalize(T1)
T1_norm=10×2 timetableTime        Temperature    WindSpeed___________    ___________    _________01-Jan-2019      0.57687       -1.4636 02-Jan-2019        0.856       0.92885 03-Jan-2019      -1.4701       0.92885 04-Jan-2019        0.856       -0.4785 05-Jan-2019     0.018609       0.36591 06-Jan-2019      -1.4701       -1.6044 07-Jan-2019      -1.0049      -0.75997 08-Jan-2019     -0.26052       0.78812 09-Jan-2019      0.94905       0.36591 10-Jan-2019      0.94905       0.92885 
C=1×2 tableTemperature    WindSpeed___________    _________28.8          13.4   
S=1×2 tableTemperature    WindSpeed___________    _________10.748        7.1056  

现在使用第一个归一化的参数值来归一化第二个时间表 T2。此方法确保 T2 中的数据以与 T1 相同的方式中心化并缩放。

T2_norm = normalize(T2,"center",C,"scale",S)
T2_norm=10×2 timetableTime        Temperature    WindSpeed___________    ___________    _________01-Jan-2020      0.11165      0.084441 02-Jan-2020      -1.6562       -1.8858 03-Jan-2020      0.66992       -1.1822 04-Jan-2020        0.856       -1.8858 05-Jan-2020       0.2047       -1.6044 06-Jan-2020      0.39078       0.50665 07-Jan-2020      0.39078      0.084441 08-Jan-2020      -0.6327       -1.0414 09-Jan-2020      0.11165       0.78812 10-Jan-2020       -1.284       -1.8858 

默认情况下,normalize 对 T2 中也存在于 C 和 S 中的全部变量进行操作。要归一化 T2 中的变量子集,请使用 DataVariables 名称-值参数指定要对其进行操作的变量。您指定的变量子集必须出现在 C 和 S 中。

将 WindSpeed 指定为要对其进行操作的数据变量。normalize 对该变量进行操作并原样返回 Temperature

T2_partial = normalize(T2,"center",C,"scale",S,"DataVariables","WindSpeed")
T2_partial=10×2 timetableTime        Temperature    WindSpeed___________    ___________    _________01-Jan-2020        30         0.084441 02-Jan-2020        11          -1.8858 03-Jan-2020        36          -1.1822 04-Jan-2020        38          -1.8858 05-Jan-2020        31          -1.6044 06-Jan-2020        33          0.50665 07-Jan-2020        33         0.084441 08-Jan-2020        22          -1.0414 09-Jan-2020        30          0.78812 10-Jan-2020        15          -1.8858 

#### 防伪水印——左手の明天 ####

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天开启新的系列——重新定义matlab强大系列💗

📆  最近更新:2023 年 05 月 25 日,左手の明天的第 286 篇原创博客

📚 更新于专栏:matlab

#### 防伪水印——左手の明天 ####

 


http://www.ppmy.cn/news/85229.html

相关文章

StringRedisTemplate和RedisTemplate的区别

StringRedisTemplate和RedisTemplate的区别 springboot提供了两种redis访问工具类StringRedisTemplate和RedisTemplate&#xff0c;为什么spring官方会提供两种不同redis访问工具呢&#xff1f;两者主要的的区别在于redis的key和value的序列化方式不同&#xff0c;并且StringR…

hive 按照某字段聚类在排序,添加编号

使用row_number&#xff08;&#xff09;函数 数据样例 /* 数据样例 --------------------------------------- id |num --------------------------------------- 1 |12 2 |8 1 |29 2 |7 1 |10 --…

Unsupervised Visual Representation Learning by Context Prediction(2015

2015年 仅给定一个大的、未标记的图像集合&#xff0c;我们从每个图像中提取随机的片对&#xff0c;并训练卷积神经网络来预测第二个片相对于第一个片的位置。我们认为&#xff0c;要做好这项工作&#xff0c;需要模型学会识别物体及其组成部分。我们证明了使用这种图像内上下文…

程序员职业病之中医颈椎痛缓解办法

✨求关注~ &#x1f600;博客&#xff1a;www.protaos.com 治疗颈椎病的穴位按摩是一种传统中医疗法&#xff0c;可以缓解颈椎病引起的疼痛和不适。下面是关于五个常用穴位的介绍、取穴定位、按摩方法和功效主治的总结&#xff1a; 人体穴位图 穴位图 1. 揉捏风池穴&#xf…

pandas 遇到Key Error错误的一个小问题

最近刚刚接触Python&#xff0c;安装了Anaconda&#xff0c; 编程小白一个&#xff0c;照着教程准备做一个中考成绩录取分数线分析的案例&#xff0c; 使用read_excel()读入数据后&#xff0c; import pandas as pd data pd.read_excel(rC:\2021-2022深圳中考录取分数线(1).xl…

React组件通信

目录 组件通信的意义 结构准备 通过Props通信 父子通信 父传子 子传父 兄弟组件通信 第三方库的消息订阅与发布 父传子 兄弟传 组件通信的意义 1&#xff09; 组件是独立且封闭的单元&#xff0c;默认情况下组件只能使用自己的数据&#xff08;state&#xff09; 2&…

ChatGPT在语音识别技术领域的应用

第一章&#xff1a;引言 近年来&#xff0c;随着深度学习技术的飞速发展&#xff0c;语音识别技术已经成为了人工智能领域中备受关注的重要领域之一。在语音识别技术的应用中&#xff0c;ChatGPT作为一款先进的语言模型&#xff0c;可以发挥其强大的文本生成和自然语言处理能力…

【ONE·C++ || 哈希(二)】

总言 主要介绍哈希运用于unordered系列的上层封装框架与相关运用&#xff1a;位图、布隆过滤器、哈希切割。 文章目录 总言0、思维导图3、封装3.1、基础封装3.1.1、框架结构3.1.2、Inset 1.0 3.2、引入迭代器3.2.1、在迭代器中3.2.2、在哈希表中3.2.3、在unordered上层3.2.4、…